Supporting Information

Isothiazolo[4,3-b]pyridines as inhibitors of cyclin G associated kinase : synthesis, structure-activity relationship studies and antiviral activity

Jiahong Li, ${ }^{\dagger, \ddagger}$ Sona Kovackova, ${ }^{\dagger, \ddagger}$ Szuyuan Pu, ${ }^{\text {I }}$ Jef Rozenski, ${ }^{\dagger}$ Steven De Jonghe, ${ }^{\dagger, \ddagger}$ Shirit Einav, ${ }^{11}$ Piet Herdewijn ${ }^{\dagger, \ddagger}$
†KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium.
\ddagger KU Leuven, Interface Valorisation Platform, Kapucijnenvoer 33, 3000 Leuven, Belgium.
" Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.

Supporting information - Table of contents

1. Experimental procedures
2. NMR spectra of final compounds
3. HPLC purity of final compounds

Experimental section

General

For all reactions, analytical grade solvents were used. All moisture-sensitive reactions were carried out in oven-dried glass-ware ($135{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra: Bruker Avance 300 Mhz (${ }^{1} \mathrm{H}-\mathrm{NMR}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR}: 75 \mathrm{MHz}$), $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}-\mathrm{NMR}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR}: 125\right.$ MHz) using tetramethylsilane as internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra and (D_{6})-DMSO (39.5 ppm) or $\mathrm{CDCl}_{3}(77.2 \mathrm{ppm})$ and $\mathrm{CD}_{3} \mathrm{OD}(49.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra. Abbreviations used are: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $m=$ multiplet, $b r=$ broad. Coupling constants are expressed in Hz. Mass spectra are obtained with a Finnigan LCQ Advantage Max (ion trap) mass spectrophotometer from Thermo Finnigan, San Jose, CA, USA. High resolution mass spectrometry spectra were acquired on a quadrupole orthogonal acceleration time-of-flight mass spectrometer (Synapt G2 HDMS, Waters, Milford, MA). Samples were infused at $3 \mu \mathrm{~L} / \mathrm{min}$ and spectra were obtained in positive (or negative) ionization mode with a resolution of 15000 (FWHM) using leucine enkephalin as lock mass. Precoated aluminum sheets (Fluka Silica gel/TLC-cards, 254 nm) were used for TLC. Column chromatography (CC) was performed on ICN silica gel 63-200, 60 Å. Compounds $\mathbf{3}$ and $\mathbf{6}$ have been synthesized according to known procedures. ${ }^{1}$

N -(6-Bromo-isothiazolo[4,3-b]pyridin-3-yl)isobutyramide (4c)

To a stirred suspension of 6-bromo-isothiazolo[4,3-b]pyridin-3-amine ($1.74 \mathrm{mmol}, 400 \mathrm{mg}$), isobutyric acid ($2.17 \mathrm{mmol}, 0.2 \mathrm{ml}$) and DIPEA ($2.72 \mathrm{mmol}, 0.45 \mathrm{ml}$) in DMF (45 ml), was added TBTU ($2.11 \mathrm{mmol}, 680 \mathrm{mg}$) in one portion. The mixture was stirred at room temperature for 12 hours, then at $75^{\circ} \mathrm{C}$ for 10 hours. After this time, the solvents were evaporated and the crude residue was purified by silicagel flash chromatography using a mixture of cyclohexane/ethyl acetate in a ratio of 4:1. The title compound was obtained in 38 \% yield ($0.67 \mathrm{mmol}, 201 \mathrm{mg}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right): ~ \delta=1.19\left(\mathrm{~d}, \mathrm{~J}=6.84 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.14$ (m, 1H, CH), 8.37 (d, J = $2.01 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 8.65 (d, J = $2.04 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 12.86 (s, 1H, NH) ppm.
${ }^{13} \mathrm{C}-$ NMR (75 MHz , DMSO-d d_{6}) $\delta=19.76\left(\mathrm{CH}_{3}\right)$, $33.44(\mathrm{CH})$, 120.48 (arom C), 130.62 (arom CH), 134.52 (arom C), 148.08 (arom CH), 151.42 (arom C), 158.75 (arom C), 176.82 (CO) ppm.

Synthesis of 3-substituted-6-bromo-isothiazolo[4,3-b]pyridines (4g, 4h, 4i, 4j) General procedure
 To a stirred suspension of 6-bromo-isothiazolo[4,3-b]pyridin-3-amine in DMF (10 mL) was added an appropriate carboxylic acid (1.2 eq), DIPEA (1.5 eq) and HATU (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium-3-oxide

hexafluorophosphate ; 1.2 eq). The reaction mixture was stirred at room temperature. After completion of reaction, solvents were evaporated and the crude residue was purified by silicagel flash chromatography affording the titled compounds. The following compounds were made according to this procedure:
N -(6-Bromo-isothiazolo[4,3-b]pyridin-3-yl)cyclopent-3-enecarboxamide (4 g)
This compound was prepared from 6-bromo-isothiazolo[4,3-b]pyridin-3-amine ($230 \mathrm{mg}, 1$ $\mathrm{mmol})$ using cyclopent-3-enecarboxylic acid ($124 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$), DIPEA ($247 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and HATU ($456 \mathrm{mg}, 1.2 \mathrm{mmol}$). The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 5:1, affording the title compound 89% yield (290 mg , 0.89 mmol).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=2.84\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 3.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.79(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{xCH})$, $8.22(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1 \operatorname{arom} \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1 \operatorname{arom} \mathrm{H}), 9.91(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$.

N -(6-Bromo-isothiazolo[4,3-b]pyridin-3-yl)cycloheptanecarboxamide (4h)

This compound was prepared from 6-bromo-isothiazolo[4,3-b]pyridin-3-amine ($230 \mathrm{mg}, 1$ mmol) using cycloheptanecarboxylic acid ($165 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$), DIPEA ($247 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and HATU ($456 \mathrm{mg}, 1.2 \mathrm{mmol}$). The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:1, affording the title compound in in 46% yield (163 $\mathrm{mg}, 0.46 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.65-1.68\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{xCH}_{2}\right), 1.89\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 2.11(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 8.25(\mathrm{~d}, \mathrm{~J}=1.92 \mathrm{~Hz}, 1 \operatorname{arom} \mathrm{H}), 8.57(\mathrm{~d}, \mathrm{~J}=1.92 \mathrm{~Hz}, 1$ arom H$)$, 9.73 (bs, 1H, NH) ppm.

N -(6-Bromoisothiazolo[4,3-b]pyridin-3-yl)tetrahydro-2H-pyran-4-carboxamide (4i)

This compound was prepared from 6-bromo-isothiazolo[4,3-b]pyridin-3-amine ($230 \mathrm{mg}, 1$ mmol) using tetrahydro-2H-pyran-4-carboxylic acid ($156 \mathrm{mg}, 1.2 \mathrm{mmol}$), DIPEA ($247 \mu \mathrm{~L}, 1.5$ mmol) and HATU ($456 \mathrm{mg}, 1.2 \mathrm{mmol}$). The crude residue was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 5:2, affording the title compound in 88 \% yield (301 $\mathrm{mg}, 0.88 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 8.23(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1$ arom H$), 8.65(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1$ arom H$) \mathrm{ppm}$.

N-(6-bromoisothiazolo[4,3-b]pyridin-3-yl)benzamide (4j)

This compound was prepared from 6-bromo-isothiazolo[4,3-b]pyridin-3-amine (143 mg, 0.621 mmol) using benzoic acid ($91 \mathrm{mg}, 0.747 \mathrm{mmol}$), DIPEA ($153 \mu \mathrm{~L}, 0.931 \mathrm{mmol}$) and HATU ($284 \mathrm{mg}, 0.745 \mathrm{mmol}$). The crude product was purified using a mixture of
cyclohexane/ethyl acetate in a ratio of 3:2, affording the title compound in 45% yield (94 mg , 0.281 mmol).
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57-7.60(\mathrm{~m}, 2 \mathrm{H}$, arom H), $7.65(\mathrm{~m}, 1 \mathrm{H}$, arom H$), 7.93(\mathrm{~m}$, 2 H , arom H), $8.45(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.51(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \operatorname{arom~H}), 9.28(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{arom}$ H) ppm.

N-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)acetamide (5a)

To a solution of 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) in DMF (10 ml) was added acetic acid ($20 \mathrm{mg}, 0.682 \mathrm{mmol}$), DIPEA ($153 \mu \mathrm{~L}, 0.931 \mathrm{mmol}$) and HATU (259 $\mathrm{mg}, 0.682 \mathrm{mmol})$. The mixture was stirred at room temperature for 6 hours. Then, the solvent was removed and the crude residue was purified by silica gel flash chromatography, affording pure $4 \mathbf{a}$. The pure product was dissolved in 1,4 -dioxane (2 mL) and 3,4dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}$, 0.017 mmol) were added. The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 19% yield ($21 \mathrm{mg}, 0.064 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.15-7.28(\mathrm{~m}, 2 \mathrm{H}$, arom H$), 8.07(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$)$, $8.78(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 10.27 (brs, $1 \mathrm{H}, \mathrm{NH}$) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.64\left(\mathrm{CH}_{2}\right), 56.17\left(\mathrm{OCH}_{3}\right), 56.20\left(\mathrm{OCH}_{3}\right), 110.62(\mathrm{CH})$, $111.88(\mathrm{CH}), 120.19(\mathrm{CH}), 125.29(\mathrm{CH}), 130.04\left(\mathrm{C}_{\mathrm{q}}\right), 135.02\left(\mathrm{C}_{\mathrm{q}}\right), 136.58\left(\mathrm{C}_{\mathrm{q}}\right), 148.13(\mathrm{CH})$, $149.76\left(\mathrm{C}_{\mathrm{q}}\right), 149.91\left(\mathrm{C}_{\mathrm{q}}\right), 151.93\left(\mathrm{C}_{\mathrm{q}}\right), 155.79\left(\mathrm{C}_{\mathrm{q}}\right), 167.79\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.
HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 330.09068$, found 330.0905 .

N-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)propionamide (5b)

To a solution of 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) in DMF (10 ml) was added propionic acid ($50 \mathrm{mg}, 0.682 \mathrm{mmol}$), DIPEA ($153 \mu \mathrm{~L}, 0.931 \mathrm{mmol}$) and HATU ($259 \mathrm{mg}, 0.682 \mathrm{mmol}$). The mixture was stirred at room temperature for 6 hours. Then, the solvent was removed and the crude residue was purified by silica gel flash chromatography, affording compound $\mathbf{4 b}$. The pure product was dissolved in 1,4-dioxane (2 mL) and 3,4dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}$, 0.017 mmol) was added. The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 25% yield ($29 \mathrm{mg}, 0.085 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.38\left(\mathrm{t}, \mathrm{J}=7.5,6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.69-2.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.97(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.0(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 7.17-7.28(\mathrm{~m}, 2 \mathrm{H}$, arom H$)$, $8.08(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 8.80(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 10.34$ (brs, 1H,NH) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.83\left(\mathrm{CH}_{3}\right), 26.76\left(\mathrm{CH}_{2}\right), 55.51\left(\mathrm{OCH}_{3}\right)$, $55.57\left(\mathrm{OCH}_{3}\right)$, $110.17(\mathrm{CH}), 111.38(\mathrm{CH}), 119.52(\mathrm{CH}), 124.14(\mathrm{CH}), 129.93\left(\mathrm{C}_{\mathrm{q}}\right), 135.61\left(\mathrm{C}_{\mathrm{q}}\right), 136.56\left(\mathrm{C}_{\mathrm{q}}\right)$, $146.58(\mathrm{CH}), 149.10\left(\mathrm{C}_{\mathrm{q}}\right), 151.23\left(\mathrm{C}_{\mathrm{q}}\right), 154.34\left(\mathrm{C}_{\mathrm{q}}\right), 157.38\left(\mathrm{C}_{\mathrm{q}}\right), 172.76\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.
HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 344.10633$, found 344.0912 .

N-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)isobutyramide (5c)

This compound was prepared starting from N -(6-Bromo-isothiazolo[4,3-b]pyridin-3yl)isobutyramide (4c) and 3,4-dimethoxyphenylboronic acid. The crude residue was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $1: 1$, affording the title compound in 32 \% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.42\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}(\mathrm{iPr})\right), 2.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{Pr})), 3.97(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03(\mathrm{~d}, \mathrm{~J}=8.31 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom~H}), 7.18(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.24-7.27 (m, 1H, arom H), $8.09(\mathrm{~d}, \mathrm{~J}=1.86 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.23(\mathrm{~d}, \mathrm{~J}=1.86 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 9.83 (br s, 1H, NH) ppm.

N-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)pivalamide (5d)

To a solution of 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) in DMF (10 ml) was added pivalic acid ($69 \mathrm{mg}, 0.682 \mathrm{mmol}$), DIPEA ($153 \mu \mathrm{~L}, 0.931 \mathrm{mmol}$) and HATU (259 $\mathrm{mg}, 0.682 \mathrm{mmol}$). The mixture was stirred at room temperature for 6 h . Then, the solvent was removed and the crude residue was purified by silica gel flash chromatography, affording pure compound $\mathbf{4 d}$. The pure product was dissolved in 1,4-dioxane (2 mL) and then 3,4dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}$, 0.017 mmol) was added. The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 12% yield ($15 \mathrm{mg}, 0.04 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.48\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.0(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.19(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.25-7.28 (m, 2H, arom H), $8.09(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.83(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 9.86 (brs, $1 \mathrm{H}, \mathrm{NH}$) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.55\left(3 \mathrm{CH}_{3}\right), 39.00\left(\mathrm{C}_{\mathrm{q}}\right), 56.22\left(2 \mathrm{OCH}_{3}\right), 110.70(\mathrm{CH})$, $111.94(\mathrm{CH}), 112.72\left(\mathrm{C}_{\mathrm{q}}\right), 120.23(\mathrm{CH}), 125.35(\mathrm{CH}), 130.25(\mathrm{CH}), 136.65(\mathrm{CH}), 147.99\left(\mathrm{C}_{\mathrm{q}}\right)$, $149.81\left(\mathrm{C}_{\mathrm{q}}\right), 149.93\left(\mathrm{C}_{\mathrm{q}}\right), 151.96\left(\mathrm{C}_{\mathrm{q}}\right), 155.91\left(\mathrm{C}_{\mathrm{q}}\right), 158.86\left(\mathrm{C}_{\mathrm{q}}\right), 176.46\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.

HR-MS [M+H]+ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 372.1376$, found 372.1373.

N -(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)-2-ethylbutanamide (5e)

To a solution of 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) in DMF (10 ml) was added 2-ethylbutanoic acid ($79 \mathrm{mg}, 0.682 \mathrm{mmol}$), DIPEA ($153 \mu \mathrm{~L}, 0.931 \mathrm{mmol}$) and

HATU ($259 \mathrm{mg}, 0.682 \mathrm{mmol}$). The mixture was stirred at room temperature for 6 hours. Then the solvent was removed and the crude residue was purified by silica gel flash chromatography, affording pure $\mathbf{4 e}$. The pure product was dissolved in 1,4-dioxane (2 mL) and 3,4-dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ was added. The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. The crude residue was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 20% yield ($26 \mathrm{mg}, 0.068 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.02\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz} 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.64-1.84\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.22-$ $2.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.9(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$)$, 7.13 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.22-7.28 (m, 1H, arom H), 7.81 (brs, 1H, NH), 8.62 (d, J $=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 9.00(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.06\left(2 \mathrm{CH}_{3}\right), 25,74\left(2 \mathrm{CH}_{2}\right), 52.35(\mathrm{CH}), 56.16\left(\mathrm{OCH}_{3}\right), 56.28$ $\left(\mathrm{OCH}_{3}\right), 110.42(\mathrm{CH}), 111.82(\mathrm{CH}), 115.36\left(\mathrm{C}_{\mathrm{q}}\right), 120.37(\mathrm{CH}), 125.85(\mathrm{CH}), 138.89\left(\mathrm{C}_{q}\right)$, $140.78\left(\mathrm{C}_{\mathrm{q}}\right), 144.36(\mathrm{CH}), 149.08\left(\mathrm{C}_{\mathrm{q}}\right), 150.61\left(\mathrm{C}_{\mathrm{q}}\right), 175.62\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.

N-(6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)cyclopropanecarboxamide (5f)

 To a solution of 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) in DMF (10 ml) was added cyclopropanecarboxylic acid ($59 \mathrm{mg}, 0.682 \mathrm{mmol}$), DIPEA ($153 \mu \mathrm{~L}, 0.931 \mathrm{mmol}$) and HATU ($259 \mathrm{mg}, 0.682 \mathrm{mmol}$). The mixture was stirred at room temperature for 6 h . Then solvent was removed and the crude residue was purified by silica gel flash chromatography. The pure product was dissolved in 1,4-dioxane (2 mL) and then 3,4-dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ were added.The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. Product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 22 \% yield ($27 \mathrm{mg}, 0.075 \mathrm{mmol}$).${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.02-1.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.16-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69-1.77$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.97(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 6.99$ (s, 1H, arom CH), 7.17-7.24 (m, 1H, arom H), 7.99 (brs, 1H, NH), 8.61 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $9.00(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=9.37\left(\mathrm{CH}_{2}\right), 16.30\left(\mathrm{CH}_{2}\right), 27.50(\mathrm{CH}), 56.18\left(\mathrm{OCH}_{3}\right), 56.29$ $\left(\mathrm{OCH}_{3}\right), 110.45(\mathrm{CH}), 111.86(\mathrm{CH}), 115, .48\left(\mathrm{C}_{\mathrm{q}}\right), 119, .88\left(\mathrm{C}_{\mathrm{q}}\right), 120.64(\mathrm{CH}), 125.54(\mathrm{CH})$, $128.61\left(\mathrm{C}_{\mathrm{q}}\right), 139.14\left(\mathrm{C}_{\mathrm{q}}\right), 140.78\left(\mathrm{C}_{\mathrm{q}}\right), 144.16(\mathrm{CH}), 149.85\left(\mathrm{C}_{\mathrm{q}}\right), 150.65\left(\mathrm{C}_{\mathrm{q}}\right), 173.19\left(\mathrm{C}_{\mathrm{q}}\right)$ ppm.

Synthesis of N-(6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl) (5g, 5h, 5i, 5j)

General procedure

To a solution of a 3-substituted-6-bromo-isothiazolo[4,3-b]pyridine (0.2 mmol) in DME was added an appropriate boronic acid (1.5 eq) and potassium carbonate (2 eq). Mixture was degassed and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ was added. The reaction was heated at $80^{\circ} \mathrm{C}$ overnight or irradiated in microwave reactor ($140^{\circ} \mathrm{C}, 150 \mathrm{~W}, 30-180$ minutes). After the completion of reaction, solvents were evaporated. The crude residue was purified by silicagel flash chromatography, yielding the pure title compounds.
The following compounds were made according to this procedure :

N-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)cyclopent-3-enecarboxamide (5g)

This compound was prepared from N-(6-bromo-isothiazolo[4,3-b]pyridin-3-yl)cyclopent-3enecarboxamide $4 \mathrm{~g}(48.6 \mathrm{mg}, 0.15 \mathrm{mmol})$ using 3,4-dimethoxyphenylboronic acid (41 mg , $0.225 \mathrm{mmol}), 2 \mathrm{M} \mathrm{K} \mathrm{K}_{3}(150 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 30 minutes. The product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $1: 1$, affording the title compound in 38% yield ($21.7 \mathrm{mg}, 0.0569 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.86\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 3.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.99 (s, 3H, OCH_{3}), $5.80(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{xCH}$), $7.01(\mathrm{~d}, \mathrm{~J}=8.34 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.17 (d, J = 2.07 $\mathrm{Hz}, 1 \mathrm{H}$, arom H), 7.24-7.27 (m, 1H, arom H), $8.08(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1 \operatorname{arom} \mathrm{H}), 8.82(\mathrm{~d}, \mathrm{~J}=$ $1.98 \mathrm{~Hz}, 1$ arom H), 10.22 (bs, $1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=36.59\left(2 \mathrm{xCH}_{2}\right), 42.44(\mathrm{CH}), 55.74\left(2 \mathrm{xOCH}_{3}\right), 110.18(\mathrm{CH})$, $111.44(\mathrm{CH}), 119.75(\mathrm{CH}), 124.86(\mathrm{CH}), 128.75(2 \times \mathrm{CH}), 129.68\left(\mathrm{C}_{\mathrm{q}}\right), 134.67\left(\mathrm{C}_{\mathrm{q}}\right), 136.16$ $\left(\mathrm{C}_{\mathrm{q}}\right), 147.61(\mathrm{CH}), 149.32\left(\mathrm{C}_{\mathrm{q}}\right), 149.45\left(\mathrm{C}_{\mathrm{q}}\right), 151.52\left(\mathrm{C}_{\mathrm{q}}\right), 155.45\left(\mathrm{C}_{\mathrm{q}}\right), 173.25\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$. HR-MS $[M+H]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 382.1219$, found 382.1217.

N-(6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)cycloheptanecarboxamide (5h)
This compound was prepared from N-(6-bromoisothiazolo[4,3-b]pyridin-3yl)cycloheptanecarboxamide $\mathbf{4 h}(53 \mathrm{mg}, 0.15 \mathrm{mmol})$ using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 45 minutes. The product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $1: 1$, affording the title compound in 33% yield ($20.7 \mathrm{mg}, 0.05 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.61-1.68\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{xCH}_{2}\right), 1.89\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 2.08(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.02(\mathrm{~d}, \mathrm{~J}=8.38 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{arom~H}), 7.4(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 7.24-7.27(\mathrm{~m}, 1 \mathrm{H}, \operatorname{arom~H}), 8.08(\mathrm{~d}, \mathrm{~J}=1.92 \mathrm{~Hz}, 1$ arom H), $8.81(\mathrm{~d}, \mathrm{~J}=1.92 \mathrm{~Hz}, 1$ arom H), $9.76(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=26.08\left(2 \mathrm{xCH}_{2}\right), 27.90\left(2 \mathrm{xCH}_{2}\right), 30.98\left(2 \mathrm{xCH}_{2}\right), 46.04(\mathrm{CH})$, $55.74\left(2 \mathrm{xOCH}_{3}\right), 110.19(\mathrm{CH}), 111.44(\mathrm{CH}), 119.75(\mathrm{CH}), 124.95(\mathrm{CH}), 129.69\left(\mathrm{C}_{\mathrm{q}}\right), 134.18$
$\left(\mathrm{C}_{\mathrm{q}}\right), 136.10\left(\mathrm{C}_{\mathrm{q}}\right), 147.45(\mathrm{CH}), 149.32\left(\mathrm{C}_{\mathrm{q}}\right), 149.45\left(\mathrm{C}_{\mathrm{q}}\right), 151.47\left(\mathrm{C}_{\mathrm{q}}\right), 155.55\left(\mathrm{C}_{\mathrm{q}}\right), 174.50$ (C_{q}) ppm.
HR-MS $[M+H]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 412.1689$, found 412.1685.
N-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)tetrahydro-2H-pyran-4-carboxamide (5i)
This compound was prepared from N-(6-bromo-isothiazolo[4,3-b]pyridin-3-yl)tetrahydro-2H-pyran-4-carboxamide $4 \mathbf{i}(51 \mathrm{mg}, 0.15 \mathrm{mmol})$ using 3,4-dimethoxyphenylboronic acid (41 mg , $0.225 \mathrm{mmol}), 2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 30 minutes. Product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:7, affording the title compound in 42% yield ($25 \mathrm{mg}, 0.062 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta=1.90\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.98(\mathrm{~d}, \mathrm{~J}=8.04 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom~H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}$, arom H), $7.84(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1$ arom H), $8.79(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1$ arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.58\left(\mathrm{CH}_{2}\right), 41.20(\mathrm{CH}), 55.74\left(2 \mathrm{xOCH}_{3}\right), 66.62\left(\mathrm{CH}_{2}\right)$, 110.19 (CH), $111.45(\mathrm{CH}), 119.77(\mathrm{CH}), 124.84(\mathrm{CH}), 129.62\left(\mathrm{C}_{\mathrm{q}}\right), 134.87\left(\mathrm{C}_{\mathrm{q}}\right), 136.25\left(\mathrm{C}_{q}\right)$, $147.79(\mathrm{CH}), 149.34\left(\mathrm{C}_{\mathrm{q}}\right), 149.49\left(\mathrm{C}_{\mathrm{q}}\right), 154.97\left(\mathrm{C}_{\mathrm{q}}\right)$, $171.55\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.

N-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)benzamide (5j)

Title compound was prepared from N -(6-bromo-isothiazolo[4,3-b]pyridin-3-yl)benzamide 4 j ($90 \mathrm{mg}, 0.269 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($74 \mathrm{mg}, 0.403 \mathrm{mmol}$), 2 M $\mathrm{K}_{2} \mathrm{CO}_{3}(269 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31 \mathrm{mg}, 0.0269 \mathrm{mmol})$ by heating at $80^{\circ} \mathrm{C}$ in $\mathrm{DME}(3 \mathrm{~mL})$. Product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $7: 3$, affording the title compound in 40% yield ($42 \mathrm{mg}, 0.107 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.99(\mathrm{~d}, \mathrm{~J}=8.37 \mathrm{~Hz}$, 1 H , arom H), $7.18(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.28(\mathrm{dd}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{~J}=8.37 \mathrm{~Hz}, 1 \mathrm{H}$, arom $\mathrm{H}), 7.56-7.60(\mathrm{~m}, 3 \mathrm{H}$, arom H), $7.67(\mathrm{~m}, 2 \mathrm{H}$, arom H), $7.96(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.49(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}$, 1 arom H), $9.20(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1$ arom H), $9.76(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=54.73\left(\mathrm{OCH}_{3}\right), 54.82\left(\mathrm{OCH}_{3}\right), 109.98(\mathrm{CH}), 111.43(\mathrm{CH})$, 114.99 (CH), $120.20(\mathrm{CH}), 125.06(\mathrm{CH}), 126.92(2 x C H), 128.05\left(\mathrm{C}_{\mathrm{q}}\right), 128.91(2 \mathrm{xCH}), 132.77$ $\left(\mathrm{C}_{\mathrm{q}}\right), 136.13\left(\mathrm{C}_{\mathrm{q}}\right), 138.65\left(\mathrm{C}_{\mathrm{q}}\right), 140.06\left(\mathrm{C}_{\mathrm{q}}\right), 144.06(\mathrm{CH}), 149.33\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 150.23\left(\mathrm{C}_{\mathrm{q}}\right), 165.63$ (C_{q}) ppm.

Synthesis of 6-bromo-3-substituted-isothiazolo[4,3-b]pyridines (71, 7m, 7n, 7o, 7p, 7q, $7 \mathrm{r}, 7 \mathrm{~s}, 7 \mathrm{t}$)

General procedure

To a solution of 3,6-di-bromo-isothiazolo[4,3-b]pyridine in ethanol (10 ml) was added an appropriate nitrogen nucleophile (1.1 eq or 3.0 eq). The reaction was stirred at $75^{\circ} \mathrm{C}$. After completion of reaction, solvent was evaporated in vacuo and the crude residue was purified by silicagel flash chromatography yielding the pure title compounds.

The following compounds were made according to this procedure:

6-Bromo-3-(4-isopropylpiperazin-1-yl)isothiazolo[4,3-b]pyridine (7l)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and N-isopropylpiperazine ($192 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{ml})$. The crude product was purified using a mixture of $\mathrm{DCM} / \mathrm{MeOH}$ in a ratio of $95: 5$, affording the title compound in 49% yield ($84 \mathrm{mg}, 0.246 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.09\left(\mathrm{~d}, \mathrm{~J}=6.54 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right), 2.76\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 3.96$ ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}$), $7.93(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.29(\mathrm{~d}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1$ arom H) ppm.

6-Bromo-3-(4-butylpiperazin-1-yl)isothiazolo[4,3-b]pyridine (7m)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and N -butylpiperazine ($78 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{ml})$. The product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:4, affording the title compound in 69% yield ($124 \mathrm{mg}, 0.349 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.99\left(\mathrm{t}, \mathrm{J}=7.26 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34-1.53\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{xCH}_{2}\right)$, $2.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 3.94\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 7.93(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.29(\mathrm{~d}, \mathrm{~J}=$ $2.01 \mathrm{~Hz}, 1$ arom H) ppm.

6-Bromo-3-(4-(pyridin-4-yl)piperazin-1-yl)isothiazolo[4,3-b]pyridine (7n)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and 1-(pyridin-4-yl)piperazine ($90 \mathrm{mg}, 0.55 \mathrm{mmol}$) in EtOH (10 ml). A yellow precipitate was formed during the reaction. The solids were filtered off, affording the title compound in 59% yield ($112 \mathrm{mg}, 0.297 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-$ NMR (300 MHz, DMSO- d_{6}): $\delta=3.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 4.10\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 6.79(\mathrm{~d}, \mathrm{~J}=$ $6.39 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.94(\mathrm{~m}, 1 \mathrm{H}$, arom H$), 8.30(\mathrm{~m}, 2 \mathrm{H}, \operatorname{arom} \mathrm{H}) \mathrm{ppm}$.

1-(4-(6-Bromo-isothiazolo[4,3-b]pyridin-3-yl)piperazin-1-yl)ethanone (7o)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and N -acetylpiperazine ($69 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{ml})$. The crude product was
purified using a mixture of cyclohexane/ethyl acetate in a ratio of $3: 7$, affording the title compound in 59% yield ($102 \mathrm{mg}, 0.299 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right)$, $4.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.94(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.30(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1$ arom H$) \mathrm{ppm}$.

Ethyl 4-(6-bromoisothiazolo[4,3-b]pyridin-3-yl)piperazine-1-carboxylate (7p)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and ethyl N -piperazinecarboxylate ($219 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) in EtOH (10 ml). Product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $8: 2$, affording the title compound in 97% yield ($181 \mathrm{mg}, 0.486 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{t}, \mathrm{J}=7.64 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 3.95(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{xCH}_{2}$), $4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.97(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1$ arom H), $8.33(\mathrm{~d}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.

(4-(6-Bromoisothiazolo[4,3-b]pyridin-3-yl)piperazin-1-yl)(phenyl)methanone (7q)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and N -benzoylpiperazine ($105 \mathrm{mg}, 0.55 \mathrm{mmol}$) in EtOH (10 ml). The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:1, affording the title compound in 57% yield ($115 \mathrm{mg}, 0.285 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.99(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{xCH} 2), 7.47(\mathrm{~m}, 5 \mathrm{H}$, arom H), $7.98(\mathrm{~d}, \mathrm{~J}=1.47$ $\mathrm{Hz}, 1 \mathrm{H}$, arom H), $8.31(\mathrm{~d}, \mathrm{~J}=1.52 \mathrm{~Hz}, 1$ arom H) ppm.

6-Bromo-3-(4-methyl-1,4-diazepan-1-yl)isothiazolo[4,3-b]pyridine (7r)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and 1-methyl-1,4-diazepane ($192 \mathrm{mg}, 1.5 \mathrm{mmol}$) in EtOH (10 ml). The product was purified using a mixture of $\mathrm{DCM} / \mathrm{MeOH}$ in a ratio of $95: 5$, affording the title compound in 31% yield ($51 \mathrm{mg}, 0.155 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.83$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.89(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 8.22$ (d, J = $2.01 \mathrm{~Hz}, 1$ arom H) ppm.

6-Bromo-N-(piperidin-4-yl)isothiazolo[4,3-b]pyridin-3-amine (7s)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($584 \mathrm{mg}, 2 \mathrm{mmol}$) and tert-butyl 4-amino-1-piperidinecarboxylate ($219 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) in EtOH (10 mL). After completion of the reaction, the solvent was evaporated affording crude tert-butyl 4-(6-bromoisothiazolo[4,3-b]pyridin-3-ylamino)piperidine-1-carboxylate as a yellow powder, which was used as such in the next step. Crude tert-butyl 4-(6-bromoisothiazolo[4,3-b]pyridin-3-
ylamino) piperidine-1-carboxylate was treated with 20% TFA in DCM (40 mL) at room temperature. After completion of reaction, the mixture was carefully neutralized with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solids were filtered off and filtrate was evaporated. The crude product was purified on silicagel using a mixture of $\mathrm{DCM} / \mathrm{MeOH}$ in a ratio of $8: 2$, affording the title compound in 34% yield ($212 \mathrm{mg}, 0.67 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.29(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.96(\mathrm{~d}, \mathrm{~J}=1.89 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$)$, 8.28 (d, J = $1.89 \mathrm{~Hz}, 1$ arom H) ppm.

6-Bromo-3-(4-methylpiperidin-1-yl)isothiazolo[4,3-b]pyridine (7t)

This compound was prepared from 3,6-di-bromo-isothiazolo[4,3-b]pyridine ($146 \mathrm{mg}, 0.5$ mmol) and 4-methylpiperidine ($176 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) in EtOH (10 ml). The product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $4: 6$, affording the title compound in 35% yield ($55 \mathrm{mg}, 0.175 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.02\left(\mathrm{~d}, \mathrm{~J}=6.39 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$), $1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.91(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.27(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1$ arom H) ppm.

Synthesis of 3-substituted-6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridines (81, 8m, 8n, 80, 8p, 8q, 8r, 8s, 8t)

General procedure

To a solution of 3-substituted-6-bromo-isothiazolo[4,3-b]pyridine (0.2 mmol) in DME was added an appropriate boronic acid (1.5 eq) and potassium carbonate (2 eq). Mixture was degassed and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ was added. The reaction was heated at $80^{\circ} \mathrm{C}$ overnight or irradiated in microwave reactor ($140^{\circ} \mathrm{C}, 150 \mathrm{~W}, 30-180$ minutes). After the completion of reaction, solvents were evaporated. The crude residue was purified by silicagel flash chromatography, yielding the pure title compounds.

The following compounds were made according to this procedure :

6-(3,4-Dimethoxyphenyl)-3-(4-isopropylpiperazin-1-yl)isothiazolo[4,3-b]pyridine (81)

This compound was prepared from 6-bromo-3-(4-isopropylpiperazin-1-yl)isothiazolo[4,3b]pyridine ($51 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{3}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 30 minutes. The crude product was purified using a mixture of $\mathrm{DCM} / \mathrm{MeOH}$ in a ratio of $95: 5$, affording the title compound in 60% yield ($36 \mathrm{mg}, 0.09 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.09\left(\mathrm{~d}, \mathrm{~J}=6.54 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right), 2.78\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right)$, 3.93$3.98\left(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{xCH}_{2}, 2 \mathrm{xOCH}_{3}\right), 6.98(\mathrm{~d}, \mathrm{~J}=8.28 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.17(\mathrm{~d}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}$,
arom H), $7.22(\mathrm{dd}, \mathrm{J}=8.28 \mathrm{~Hz}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom~H}), 7.85(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.52(\mathrm{~d}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1$ arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.04\left(\mathrm{CH}_{3}\right), 47.60\left(\mathrm{CH}_{2}\right), 50.38\left(\mathrm{CH}_{2}\right), 54.43(\mathrm{CH}), 55.68$ $\left(2 \mathrm{xOCH}_{3}\right), 110.08(\mathrm{CH}), 111.37(\mathrm{CH}), 119.53(\mathrm{CH}), 124.43(\mathrm{CH}), 130.10\left(\mathrm{C}_{\mathrm{q}}\right), 133.64\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.09\left(\mathrm{C}_{\mathrm{q}}\right)$, $143.71(\mathrm{CH})$, $149.17\left(2 \mathrm{xC}_{\mathrm{q}}\right)$, $155.98\left(\mathrm{C}_{\mathrm{q}}\right), 172.83\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.
HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ 399.1849, found 399.1844.

3-(4-Butylpiperazin-1-yl)-6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridine (8m)

This compound was prepared from 6-bromo-3-(4-butylpiperazin-1-yl)isothiazolo[4,3b]pyridine ($53 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(3 \mathrm{~mL})$ by MW irradiation for 30 minutes. Product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 2:8, affording the title compound in 32% yield ($20 \mathrm{mg}, 0.048 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.01\left(\mathrm{t}, \mathrm{J}=7.26 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.42-3.47$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{CH}, 3 \mathrm{xCH}_{2}$), $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.59(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 7.98(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 7.16(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=2.04$ $\mathrm{Hz}, \mathrm{J}=8.22 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{arom}$ H) ppm .
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.49\left(\mathrm{CH}_{3}\right)$, $19.72\left(\mathrm{CH}_{2}\right), 23.81\left(\mathrm{CH}_{2}\right), 44.71\left(2 \mathrm{xCH}_{2}\right), 55.71$ $\left(2 \mathrm{xOCH}_{3}\right), 62.43\left(2 \mathrm{xCH}_{2}\right), 71.38\left(\mathrm{CH}_{2}\right), 110.09(\mathrm{CH}), 111.42(\mathrm{CH}), 119.61(\mathrm{CH}), 124.61$ $(\mathrm{CH}), 129.73\left(\mathrm{C}_{\mathrm{q}}\right), 133.92\left(\mathrm{C}_{\mathrm{q}}\right), 135.39\left(\mathrm{C}_{\mathrm{q}}\right), 144.91(\mathrm{CH}), 149.25\left(\mathrm{C}_{\mathrm{q}}\right), 149.37\left(\mathrm{C}_{\mathrm{q}}\right), 156.01$ $\left(\mathrm{C}_{\mathrm{q}}\right), 171.41\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.

6-(3,4-Dimethoxyphenyl)-3-(4-(pyridin-4-yl)piperazin-1-yl)isothiazolo[4,3-b]pyridine (8n)

This compound was prepared from 6-bromo-3-(4-(pyridin-4-yl)piperazin-1-yl)isothiazolo[4,3b]pyridine ($56 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 30 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $3: 2$, affording the title compound 29% yield ($19 \mathrm{mg}, 0.043 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=3.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $4.07\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 6.90(\mathrm{~d}, \mathrm{~J}=6.45 \mathrm{~Hz}, 2 \mathrm{H}$, arom H$), 7.10(\mathrm{~d}, \mathrm{~J}=9.03 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.38(\mathrm{~m}, 2 \mathrm{H}$, arom H), $8.01(\mathrm{~d}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.20(\mathrm{~d}, \mathrm{~J}=6.27 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{arom~H}$), $8.78(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1$ arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta=44.71\left(2 \mathrm{xCH}_{2}\right), 49.19\left(2 \mathrm{xCH}_{2}\right), 55.76\left(\mathrm{OCH}_{3}\right), 55.82$ $\left(\mathrm{OCH}_{3}\right), 108.59(\mathrm{CH}), 110.92(\mathrm{CH}), 112.39(\mathrm{CH}), 119.82(\mathrm{CH}), 124.00(\mathrm{CH}), 129.26\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.26\left(\mathrm{C}_{\mathrm{q}}\right), 134.84\left(\mathrm{C}_{\mathrm{q}}\right), 144.21(\mathrm{CH}), 149.43\left(\mathrm{C}_{\mathrm{q}}\right), 149.54\left(\mathrm{C}_{\mathrm{q}}\right), 149.81(\mathrm{CH}), 154.30\left(\mathrm{C}_{\mathrm{q}}\right)$, $155.79\left(\mathrm{C}_{\mathrm{q}}\right), 172.23\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.

HR-MS [M+H] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ 434.1645, found 434.1638.
1-(4-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)piperazin-1-yl)ethanone (80)
This compound was prepared from 4-(6-bromo-isothiazolo[4,3-b]pyridin-3-ylamino)-N-ethylpiperidine-1-carboxamide ($51 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME (3 mL) by MW irradiation for 30 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:4, affording the title compound in 28% yield (17 mg , 0.042 mmol).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right)$, $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.00(\mathrm{~d}, \mathrm{~J}=8.37 \mathrm{~Hz}, 1 \mathrm{H}$, arom $\mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 7.24(\mathrm{~m}, 1 \mathrm{H}, \operatorname{arom~H}), 7.89(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 8.67 (d, J = $2.07 \mathrm{~Hz}, 1$ arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=20.99\left(\mathrm{CH}_{3}\right), 40.26\left(\mathrm{CH}_{2}\right), 45.27\left(\mathrm{CH}_{2}\right), 49.54\left(\mathrm{CH}_{2}\right), 50.05$ $\left(\mathrm{CH}_{2}\right), 55.71\left(2 \mathrm{xOCH}_{3}\right), 110.10(\mathrm{CH}), 111.42(\mathrm{CH}), 119.59(\mathrm{CH}), 124.55(\mathrm{CH}), 129.85\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.10\left(\mathrm{C}_{\mathrm{q}}\right), 135.37\left(\mathrm{C}_{\mathrm{q}}\right), 144.51(\mathrm{CH}), 149.23\left(\mathrm{C}_{\mathrm{q}}\right), 149.34\left(\mathrm{C}_{\mathrm{q}}\right), 156.03\left(\mathrm{C}_{\mathrm{q}}\right), 168.86\left(\mathrm{C}_{\mathrm{q}}\right)$, $172.32\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.
HR-MS [M+H] ${ }^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ 399.1485, found 399.1487.
Ethyl 4-(6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)piperazine-1-carboxylate (8p)
This compound was prepared from (4-(6-bromo-isothiazolo[4,3-b]pyridin-3-yl)piperazin-1$\mathrm{yl})$ (phenyl)methanone ($92 \mathrm{mg}, 0.25 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid (68 mg , $0.375 \mathrm{mmol}), 2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(250 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{mmol})$ by heating at $80^{\circ} \mathrm{C}$ in DME (3 mL). The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $7: 3$, affording the title compound in 25% yield ($27 \mathrm{mg}, 0.063 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.28\left(\mathrm{t}, \mathrm{J}=7.28 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.69\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 3.96-$ $3.98\left(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{xCH}_{2}, 2 \mathrm{xOCH}_{3}\right), 4.19\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.97(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 7.16(\mathrm{~d}$, $J=2.07 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.22(\mathrm{dd}, \mathrm{J}=2.04 \mathrm{~Hz}, \mathrm{~J}=8.40,1 \mathrm{H}$, arom H), $7.86(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}$, 1 arom H), $8.64(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.32\left(\mathrm{CH}_{3}\right), 42.65\left(\mathrm{CH}_{2}\right), 49.74\left(\mathrm{CH}_{2}\right)$, $55.69\left(2 \mathrm{xOCH}_{3}\right)$, $61.48\left(\mathrm{CH}_{2}\right), 110.06(\mathrm{CH}), 111.38(\mathrm{CH}), 119.55(\mathrm{CH}), 124.48(\mathrm{CH}), 129.89\left(\mathrm{C}_{\mathrm{q}}\right), 133.68\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.25\left(\mathrm{C}_{\mathrm{q}}\right), 144.27(\mathrm{CH}), 149.20\left(\mathrm{C}_{\mathrm{q}}\right), 149.26\left(\mathrm{C}_{\mathrm{q}}\right), 155.04\left(\mathrm{C}_{\mathrm{q}}\right), 156.01(\mathrm{CO}), 172.56\left(\mathrm{C}_{\mathrm{q}}\right)$ ppm.
HR-MS $[M+H]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{1} 429.1590$, found 429.1588.

(4-(6-(3,4-Dimethoxyphenyl)isothiazolo[4,3-b]pyridin-3-yl)piperazin-1-yl)(phenyl)methanone

 (8q)This compound was prepared from (4-(6-bromoisothiazolo[4,3-b]pyridin-3-yl)piperazin-1$\mathrm{yl})$ (phenyl)methanone ($61 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid (41 mg , $0.225 \mathrm{mmol}), 2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(3 \mathrm{~mL})$ by MW irradiation for 30 minutes. The crude residue was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 3:2, affording the title compound in 23% yield (16 mg , 0.034 mmol).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right)$, 6.99 (d, J = $8.31 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom~H}$), 7.17 (d, J = $1.86 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.25 (dd, J = 1.86 Hz , $J=8.31 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.47 (m, 5H, arom H), 7.88 (d, J = $1.47 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 8.65 (d, J $=1.52 \mathrm{~Hz}, 1$ arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=50.05\left(4 \mathrm{xCH}_{2}\right), 55.71\left(2 \mathrm{xOCH}_{3}\right), 110.08(\mathrm{CH}), 111.39(\mathrm{CH})$, 119.61 (CH), 124.47 (CH), 126.82 ($2 \times \mathrm{CH}$), $128.37(2 \times C H), 129.88\left(\mathrm{C}_{\mathrm{q}}\right), 134.71\left(\mathrm{C}_{\mathrm{q}}\right), 135.44$ $\left(\mathrm{C}_{\mathrm{q}}\right), 144.56(\mathrm{CH}), 149.23\left(\mathrm{C}_{\mathrm{q}}\right), 149.35\left(\mathrm{C}_{\mathrm{q}}\right), 155.94\left(\mathrm{C}_{\mathrm{q}}\right), 164.80\left(\mathrm{C}_{\mathrm{q}}\right), 170.38\left(\mathrm{C}_{\mathrm{q}}\right), 172.35$ (C) ppm.

HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} 461.1641$, found 461.1637.

6-(3,4-dimethoxyphenyl)-3-(4-methyl-1,4-diazepan-1-yl)isothiazolo[4,3-b]pyridine (8r)

This compound was prepared from 6-bromo-3-(4-methyl-1,4-diazepan-1-yl)isothiazolo[4,3b]pyridine ($49 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 30 minutes. The crude product was purified using a mixture of $\mathrm{DCM} / \mathrm{MeOH}$ in a ratio of $95: 5$, affording the title compound in 26% yield ($15 \mathrm{mg}, 0.039 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.89$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.99 (d, J = $8.37 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.18 (d, J = $2.01 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.24 (dd, J = $8.37 \mathrm{~Hz}, \mathrm{~J}$ $=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 8.57(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1$ arom H$)$ ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.89\left(\mathrm{CH}_{2}\right), 46.20\left(\mathrm{CH}_{2}\right), 50.79\left(\mathrm{CH}_{2}\right)$, $52.86\left(\mathrm{CH}_{2}\right), 55.67$ $\left(\mathrm{OCH}_{3}\right), 55.69\left(\mathrm{OCH}_{3}\right), 57.30\left(\mathrm{CH}_{2}\right), 57.68\left(\mathrm{CH}_{2}\right), 110.10(\mathrm{CH}), 111.37(\mathrm{CH}), 119.48(\mathrm{CH})$, $124.16(\mathrm{CH}), 130.27\left(\mathrm{C}_{\mathrm{q}}\right), 132.55\left(\mathrm{C}_{\mathrm{q}}\right), 135.00\left(\mathrm{C}_{\mathrm{q}}\right), 142.71(\mathrm{CH}), 149.14\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 155.82\left(\mathrm{C}_{\mathrm{q}}\right)$, 171.55 (Cq) ppm.

HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{1}$ 385.1692, found 385.1692.

6-(3,4-Dimethoxyphenyl)-3-(4-methylpiperidin-1-yl)isothiazolo[4,3-b]pyridine (8s)

This compound was prepared from 6-bromo-3-(4-methylpiperidin-1-yl)isothiazolo[4,3b]pyridine ($49 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$),
$2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 30 minutes. The crude product was purified using a mixture of $\mathrm{DCM} / \mathrm{MeOH}$ in a ratio of $95: 5$, affording the title compound in 43% yield ($24 \mathrm{mg}, 0.065 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.02\left(\mathrm{~d}, \mathrm{~J}=6.39 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$), $1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.67$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $6.99(\mathrm{~d}, \mathrm{~J}=8.34 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.18(\mathrm{~d}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.23 (dd, $J=8.37 \mathrm{~Hz}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.84(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 8.31(\mathrm{~d}, \mathrm{~J}=2.01$ $\mathrm{Hz}, 1$ arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.42\left(\mathrm{CH}_{3}\right), 30.13(\mathrm{CH}), 33.10\left(2 \mathrm{xCH}_{2}\right)$, $50.88\left(2 \mathrm{xCH}_{2}\right)$, $55.67\left(\mathrm{OCH}_{3}\right), 55.69\left(\mathrm{OCH}_{3}\right), 110.05(\mathrm{CH}), 111.35(\mathrm{CH}), 119.50(\mathrm{CH}), 124.20(\mathrm{CH}), 130.08$ $\left(\mathrm{C}_{\mathrm{q}}\right), 133.31\left(\mathrm{C}_{\mathrm{q}}\right), 135.09\left(\mathrm{C}_{\mathrm{q}}\right), 143.21(\mathrm{CH}), 149.14\left(\mathrm{C}_{\mathrm{q}}\right), 149.16\left(\mathrm{C}_{\mathrm{q}}\right), 155.81\left(\mathrm{C}_{\mathrm{q}}\right), 173.01$ (C_{q}) ppm.
HR-MS $[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{1} 371.1536$, found 371.1528.

6-(3,4-Dimethoxyphenyl)-3-(4-methylpiperidin-1-yl)isothiazolo[4,3-b]pyridine (8t)

This compound was prepared from 6-bromo-3-(4-methylpiperidin-1-yl)isothiazolo[4,3b]pyridine ($49 \mathrm{mg}, 0.15 \mathrm{mmol}$) using 3,4-dimethoxyphenylboronic acid ($41 \mathrm{mg}, 0.225 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(150 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ by MW irradiation for 30 minutes. The crude product was purified using a mixture of $\mathrm{DCM} / \mathrm{MeOH}$ in a ratio of $95: 5$, affording the title compound in 43% yield ($24 \mathrm{mg}, 0.065 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.02\left(\mathrm{~d}, \mathrm{~J}=6.39 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$), 1.75 (m, 2H, CH2 $), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.67$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $6.99(\mathrm{~d}, \mathrm{~J}=8.34 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.18(\mathrm{~d}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.23 (dd, $J=8.37 \mathrm{~Hz}, \mathrm{~J}=2.04 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.84(\mathrm{~d}, \mathrm{~J}=2.07 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.31(\mathrm{~d}, \mathrm{~J}=2.01$ $\mathrm{Hz}, 1$ arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.42\left(\mathrm{CH}_{3}\right), 30.13(\mathrm{CH}), 33.10\left(2 \mathrm{xCH}_{2}\right)$, $50.88\left(2 \mathrm{xCH}_{2}\right)$, $55.67\left(\mathrm{OCH}_{3}\right), 55.69\left(\mathrm{OCH}_{3}\right), 110.05(\mathrm{CH}), 111.35(\mathrm{CH}), 119.50(\mathrm{CH}), 124.20(\mathrm{CH}), 130.08$ $\left(\mathrm{C}_{\mathrm{q}}\right), 133.31\left(\mathrm{C}_{\mathrm{q}}\right), 135.09\left(\mathrm{C}_{\mathrm{q}}\right), 143.21(\mathrm{CH}), 149.14\left(\mathrm{C}_{\mathrm{q}}\right), 149.16\left(\mathrm{C}_{\mathrm{q}}\right), 155.81\left(\mathrm{C}_{\mathrm{q}}\right), 173.01$ (C_{q}) ppm.

Synthesis of 3-alkoxy-6-bromo-isothiazolo[4,3-b]pyridines (7i, 7j) General procedure

To a solution of 3,6-dibromo-isothiazolo[4,3-b]pyridine (0.68 mmol) in the appropriate alcohol $(10 \mathrm{ml})$ was added carefully at $0^{\circ} \mathrm{C}$ the appropriate sodium alcoxide (3 eq). The resulting reaction mixture was stirred overnight at room temperature and then heated at $55^{\circ} \mathrm{C}$ for 8 hours. The reaction was cooled down to room temperature, neutralized with a $5 \% \mathrm{HCl}$ solution and evaporated in vacuo. The residue was divided between ethyl acetate (250 ml)
and water (150 ml). The organic phase was dried and evaporated. The crude residue was purified by silica gel flash chromatography, the mobile phase being a mixture of cyclohexane and ethylacetate (in a ratio gradually ranging from $5: 1$ to $4: 1$), yielding the pure title compound.
The following compounds were made according to this procedure :

3-Ethoxy-6-bromo-isothiazolo[4,3-b]pyridine (7i)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.70\left(\mathrm{t}, \mathrm{J}=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.54(\mathrm{q}, \mathrm{J}=7.02 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 8.09(\mathrm{~d}, \mathrm{~J}=1.98 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$), 8.56(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.

3-Isopropoxy-6-bromo-isothiazolo[4,3-b]pyridine (7j)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.63\left(\mathrm{~d}, \mathrm{~J}=6.09 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$), 4.88 (sept, $\mathrm{J}=6.09 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}), 8.08(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom~H}), 8.54(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.

Synthesis of 3-alkoxy-6-(3-thienyl)isothiazolo[4,3-b]pyridines (8i, 8j)

General procedure

These compounds were synthesized according to the general procedure for the synthesis of compounds 8l-t, using 3-thiophene boronic acid instead of 3,4-dimethoxyphenylboronic acid. The following compounds were made according to this procedure :

3-Ethoxy-6-(3-thienyl)-isothiazolo[4,3-b]pyridine (8i)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.67\left(\mathrm{t}, \mathrm{J}=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.51(\mathrm{q}, \mathrm{J}=7.02 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 7.45(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.65(\mathrm{t}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=1.89 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.85(\mathrm{~d}, \mathrm{~J}=1.89 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.49\left(\mathrm{CH}_{3}\right), 72.51\left(\mathrm{OCH}_{2}\right), 122.81(\mathrm{CH}), 124.56(\mathrm{CH})$, $126.22(\mathrm{CH}), 127.36(\mathrm{CH}), 131.59\left(\mathrm{C}_{\mathrm{q}}\right), 138.48\left(\mathrm{C}_{\mathrm{q}}\right), 148.11\left(\mathrm{C}_{\mathrm{q}}\right), 145.92\left(\mathrm{C}_{\mathrm{q}}\right), 181.96\left(\mathrm{C}_{\mathrm{q}}\right)$.

HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OS}_{2} 263.03072$, found 263.0312.

3-Isopropoxy-6-(3-thienyl)-isothiazolo[4,3-b]pyridine (8j)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.60\left(\mathrm{~d}, \mathrm{~J}=6.09 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$), 4.86 (sept, $\mathrm{J}=6.09 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}), 7.45(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 2 \mathrm{H}$, arom H$), 7.65(\mathrm{t}, \mathrm{J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arom} \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=$ $1.83 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.85(\mathrm{~d}, \mathrm{~J}=1.86 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.08\left(\mathrm{CH}_{3}\right), 81.32(\mathrm{OCH}), 122.80(\mathrm{CH}), 124.61(\mathrm{CH}), 126.27$ $(\mathrm{CH}), 127.38(\mathrm{CH}), 131.23\left(\mathrm{C}_{\mathrm{q}}\right), 134.39\left(\mathrm{C}_{\mathrm{q}}\right), 138.73\left(\mathrm{C}_{\mathrm{q}}\right), 148.01(\mathrm{CH}), 155.12\left(\mathrm{C}_{\mathrm{q}}\right), 181.45$ (C_{q}).
HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}_{2} 277.04637$, found 277.0467 .

6-(3,4-Dimethoxyphenyl)-3-isopropoxyisothiazolo[4,3-b]pyridine (8b)

To a solution of propan-2-ol ($81 \mathrm{mg}, 1.76 \mathrm{mmol}$) in toluene (10 ml) was added $\mathrm{NaH}(16 \mathrm{mg}$, 0.682 mmol) and 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) at room temperature. The mixture was stirred under MW irradiation at $50^{\circ} \mathrm{C}$ for 60 minutes. Then, the solvent was removed and the crude residue was purified by silica gel flash chromatography, affording pure 7b. The pure product was dissolved in 1,4-dioxane (2 mL), then 3,4dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20$ $\mathrm{mg}, 0.017 \mathrm{mmol}$) were added. The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. Product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 30% yield ($33 \mathrm{mg}, 0.10 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.63$ (d, J = 6.3, 6H, $2 \mathrm{CH}_{3}$), 3.96 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.98 (s, 3 H , $\left.\mathrm{OCH}_{3}\right), 4.86-4.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 6.99(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.17-7.28 (m, 2H, arom H), $7.92(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $8.83(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.05\left(\mathrm{CH}_{3}\right), 56.15\left(\mathrm{OCH}_{3}\right), 56.17\left(\mathrm{OCH}_{3}\right), 81.23(\mathrm{OCH})$, $110.60(\mathrm{CH}), 111.83(\mathrm{CH}), 120.20\left(\mathrm{C}_{\mathrm{q}}\right), 125.13\left(\mathrm{C}_{\mathrm{q}}\right), 130.15\left(\mathrm{C}_{\mathrm{q}}\right), 133.96\left(\mathrm{C}_{\mathrm{q}}\right), 136.60\left(\mathrm{C}_{\mathrm{q}}\right)$, $148.50(\mathrm{CH}), 149.69\left(\mathrm{C}_{\mathrm{q}}\right), 149.86\left(\mathrm{C}_{\mathrm{q}}\right), 155.02\left(\mathrm{C}_{\mathrm{q}}\right), 181.23\left(\mathrm{C}_{\mathrm{q}}\right)$.

HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 331.11108$, found 331.1107.

3-sec-Butoxy-6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridine (8c)

To a solution of butan-2-ol ($130 \mathrm{mg}, 1.76 \mathrm{mmol}$) in toluene (10 ml) was added $\mathrm{NaH}(16 \mathrm{mg}$, 0.682 mmol) and 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) at room temperature. The mixture was stirred under MW irradiation at $50^{\circ} \mathrm{C}$ for 60 minutes. The solvent was removed and the crude residue was purified by silica gel flash chromatography. The pure product was dissolved in 1,4-dioxane (2 mL), and 3,4-dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ were added. The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $1: 5$, affording the title compound in 33% yield ($41 \mathrm{mg}, 0.11 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.07\left(\mathrm{t}, \mathrm{J}=7.5,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56\left(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80-$ $2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.65(\mathrm{t}, \mathrm{J}=6.2,1 \mathrm{H}, \mathrm{OCH}), 6.86(\mathrm{~d}$, $\mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $6.97(\mathrm{~s}, 1 \mathrm{H}$, arom H), 7.21-7.28(m, 1H, arom H), $7.92(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, 1 H , arom H), 8.81 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=9.14\left(\mathrm{CH}_{3}\right), 19.21\left(\mathrm{CH}_{2}\right), 29.15\left(\mathrm{CH}_{3}\right), 56.01\left(\mathrm{OCH}_{3}\right), 56.03$ $\left(\mathrm{OCH}_{3}\right), 86.63(\mathrm{OCH}), 110.40(\mathrm{CH}), 111.70(\mathrm{CH}), 120.09(\mathrm{CH}), 125.02(\mathrm{CH}), 129.85\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.26\left(\mathrm{C}_{\mathrm{q}}\right), 136.62\left(\mathrm{C}_{\mathrm{q}}\right), 148.30(\mathrm{CH}), 149.54\left(\mathrm{C}_{\mathrm{q}}\right), 149.74\left(\mathrm{C}_{\mathrm{q}}\right), 152.28\left(\mathrm{C}_{\mathrm{q}}\right), 154.91\left(\mathrm{C}_{\mathrm{q}}\right)$, $181.65\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.
HR-MS $[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 345.12673$, found 345.1271.

3-Butoxy-6-(3,4-dimethoxyphenyl)isothiazolo[4,3-b]pyridine (8d)

To a solution of butan-1-ol ($130 \mathrm{mg}, 1.76 \mathrm{mmol}$) in toluene (10 ml) was added $\mathrm{NaH}(16 \mathrm{mg}$, 0.682 mmol) and 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) at room temperature. The mixture was stirred under MW irradiation at $50^{\circ} \mathrm{C}$ for 60 minutes. The solvent was removed and the crude residue was purified by silica gel flash chromatography. The pure product was dissolved in 1,4-dioxane (2 mL), and then 3,4-dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ were added. The mixture was stirred under MW irradiation $80^{\circ} \mathrm{C}$ for 60 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 23 \% yield ($27 \mathrm{mg}, 0.078 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.03\left(\mathrm{t}, \mathrm{J}=7.3,6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99-2.08$ (m, 2H, CH $)_{2}$, $3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.47\left(\mathrm{t}, \mathrm{J}=6.5,2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.99(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.16(\mathrm{~s}, 1 \mathrm{H}$, arom H), 7.23-7.28 (m, 1H, arom H), $7.94(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, 1 H , arom H), $8.84(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.75\left(\mathrm{CH}_{3}\right), 19.13\left(\mathrm{CH}_{2}\right), 31.21\left(\mathrm{CH}_{2}\right), 56.13\left(\mathrm{OCH}_{3}\right), 56.15$ $\left(\mathrm{OCH}_{3}\right), 76.58\left(\mathrm{OCH}_{2}\right), 110.58(\mathrm{CH}), 111.81(\mathrm{CH}), 120.19(\mathrm{CH}), 125.11(\mathrm{CH}), 130.08\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.29\left(\mathrm{C}_{\mathrm{q}}\right), 148.57(\mathrm{CH}), 149.68\left(\mathrm{C}_{\mathrm{q}}\right), 149.85\left(\mathrm{C}_{\mathrm{q}}\right), 155.01\left(\mathrm{C}_{\mathrm{q}}\right), 182.34\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$.

HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 345.12673$, found 345.1261.

6-(3,4-Dimethoxyphenyl)-3-(pentyloxy)isothiazolo[4,3-b]pyridine (8e)

To a solution of pentan-1-ol ($154 \mathrm{mg}, 1.76 \mathrm{mmol}$) in toluene (10 ml) was added $\mathrm{NaH}(16 \mathrm{mg}$, 0.682 mmol) and 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) at room temperature. The mixture was stirred under MW irradiation $50^{\circ} \mathrm{C}$ for 60 minutes. Then, the solvent was removed and the crude residue was purified by silica gel flash chromatography. The pure product was dissolved in 1,4-dioxane (2 mL), then 3,4-dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ were added. The mixture was stirred under MW irradiation $80^{\circ} \mathrm{C}$ for 60 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $1: 5$, affording the title compound in 18% yield ($32 \mathrm{mg}, 0.092 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.96\left(\mathrm{t}, \mathrm{J}=7.2,6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43-1.60\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.02-2.11$ (m, 2H, CH 2), $3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.47\left(\mathrm{t}, \mathrm{J}=6.5,2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.99(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.17(\mathrm{~s}, 1 \mathrm{H}$, arom H), 7.24-7.28 (m, 1H, arom H), $7.94(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, 1 H , arom H), 8.84 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.98\left(\mathrm{CH}_{3}\right), 22.40\left(\mathrm{CH}_{2}\right), 27.98\left(\mathrm{CH}_{2}\right), 28.95\left(\mathrm{CH}_{2}\right)$, 56.12 $\left(\mathrm{OCH}_{3}\right), 56.14\left(\mathrm{OCH}_{3}\right), 76.70\left(\mathrm{OCH}_{2}\right), 110.58(\mathrm{CH}), 111.81(\mathrm{CH}), 120.18(\mathrm{CH}), 125.11(\mathrm{CH})$, $130.09\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.30\left(\mathrm{C}_{\mathrm{q}}\right), 148.57(\mathrm{CH}), 149.68\left(\mathrm{C}_{\mathrm{q}}\right), 149 .\left(\mathrm{C}_{\mathrm{q}}\right), 155.01\left(\mathrm{C}_{\mathrm{q}}\right)$, $182.34\left(\mathrm{C}_{\mathrm{q}}\right) \mathrm{ppm}$. HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 359.14238$, found 359.1415 .

6-(3,4-Dimethoxyphenyl)-3-(isopentyloxy)isothiazolo[4,3-b]pyridine (8f)

To a solution of 4-methylpentan-1-ol ($179 \mathrm{mg}, 1.76 \mathrm{mmol}$) in toluene (10 ml) was added NaH ($16 \mathrm{mg}, 0.682 \mathrm{mmol}$) and 3,6-dibromo-isothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) at room temperature. The mixture was stirred under MW irradiation at $50^{\circ} \mathrm{C}$ for 60 minutes. Then, the solvent was removed and the crude residue was purified by silica gel flash chromatography. The pure product was dissolved in 1,4-dioxane (2 mL), then 3,4 dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20$ $\mathrm{mg}, 0.017 \mathrm{mmol}$) were added. The mixture was stirred under MW irradiation at $80^{\circ} \mathrm{C}$ for 60 minutes. The crude product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of 1:5, affording the title compound in 27% yield ($32 \mathrm{mg}, 0.092 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.03\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.92-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.96$ (s, 3H, OCH 3), $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.47\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), $7.17(\mathrm{~s}, 1 \mathrm{H}, \operatorname{arom~H}), 7.24-7.28(\mathrm{~m}, 1 \mathrm{H}, \operatorname{arom~H}), 7.95(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, arom H$)$, $8.85(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.47\left(2 \mathrm{CH}_{3}\right)$, $24.89(\mathrm{CH}), 37.76\left(\mathrm{CH}_{2}\right), 56.10\left(\mathrm{OCH}_{3}\right), 56.12$ $\left(\mathrm{OCH}_{3}\right), 75.29\left(\mathrm{OCH}_{2}\right), 110.54(\mathrm{CH}), 111.79(\mathrm{CH}), 120.17(\mathrm{CH}), 125.08(\mathrm{CH}), 130.044\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.26\left(\mathrm{C}_{\mathrm{q}}\right), 136.54\left(\mathrm{C}_{\mathrm{q}}\right), 148.55(\mathrm{CH}), 149.65\left(\mathrm{C}_{\mathrm{q}}\right), 149.83\left(\mathrm{C}_{\mathrm{q}}\right), 154.99\left(\mathrm{C}_{\mathrm{q}}\right), 182.29\left(\mathrm{C}_{\mathrm{q}}\right)$ ppm.

HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 359.14238$, found 359.1420 .

6-(3,4-Dimethoxyphenyl)-3-(cyclohexyloxy)isothiazolo[4,3-b]pyridine (8g)

To a solution of cyclohexanol ($176 \mathrm{mg}, 1.76 \mathrm{mmol}$) in 10 ml toluene added $\mathrm{NaH}(16 \mathrm{mg}$, 0.682 mmol) and 3,6-dibromoisothiazolo[4,3-b]pyridine ($100 \mathrm{mg}, 0.341 \mathrm{mmol}$) at room temperature. The mixture was stirred under MW irradiation $50^{\circ} \mathrm{C}$ for 60 minutes. Then solvent was removed and the crude residue was purified by silica gel flash chromatography. The pure product was dissolved in 1,4-dioxane (2 mL), then added 3,4dimethoxyphenylboronic acid ($62 \mathrm{mg}, 0.341 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(300 \mu \mathrm{~L}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}$, 0.017 mmol).The mixture was stirred under MW irradiation $80^{\circ} \mathrm{C}$ for 60 minutes. Product was purified using a mixture of cyclohexane/ethyl acetate in a ratio of $1: 5$, affording the title compound in 20% yield ($12 \mathrm{mg}, 0.034 \mathrm{mmol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.87-0.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27-2.29\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 3.97(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.56-4.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 7.01(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 7.17 (s, 1H, arom H), 7.25-7.28 (m, 1H, arom H), 7.93 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H), 8.84 (d, J $=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, arom H) ppm.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=23.85\left(\mathrm{CH}_{2}\right), 25.28\left(2 \mathrm{CH}_{2}\right), 31.68\left(2 \mathrm{CH}_{2}\right), 56.21\left(2 \mathrm{OCH}_{3}\right)$, 86.46 (OCH), $110.66(\mathrm{CH}), 111.89(\mathrm{CH}), 120.24(\mathrm{CH}), 125.18(\mathrm{CH}), 130.25\left(\mathrm{C}_{\mathrm{q}}\right), 136.62\left(\mathrm{C}_{\mathrm{q}}\right)$, $148.51(\mathrm{CH}), 149.75\left(\mathrm{C}_{\mathrm{q}}\right), 149.90\left(\mathrm{C}_{\mathrm{q}}\right), 155.08\left(\mathrm{C}_{\mathrm{q}}\right)$, $181.59\left(\mathrm{C}_{\mathrm{q}}\right)$.

HR-MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 371.14238$, found 371.1408 .

Cells

Huh-7.5 cells were grown in Dulbecco's modified Eagle medium (Life Technologies) supplemented with 10% fetal bovine serum (Omega Scientific), nonessential amino acids (Gibco), 1\% L-glutamine (Gibco), and 1\% penicillin-streptomycin (Gibco), and maintained in $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

HCVcc generation

pFL-J6/JFH(p7-Rluc2A) was a gift from Dr. C.M. Rice. ${ }^{2}$ HCV RNA was generated and delivered into Huh-7.5 cells, as previously described. ${ }^{3,4}$ Viral titers were determined by limiting dilution and immunohistochemical staining, as described. ${ }^{3,4}$

HCVcc infection

6×10^{3} Huh-7.5 cells seeded in 96 -well plates were infected in triplicates with HCVcc J6/JFH (p7-Rluc2A) at MOI (multiplicity of infection) of 0.1 in the presence of serial dilutions of the compounds. Culture medium was replaced daily with medium containing serial dilutions of the inhibitors. HCVcc infection was measured by standard luciferase assays at 72 hours postinfection, using a Renilla luciferase substrate and Tecan M1000 (Tecan) according to the manufacturers' protocols.

Viability assay

Following treatment with GAK inhibitors, Huh-7.5 cells infected with HCVcc were incubated for 2-4 hours with media supplemented with 10\% AlamarBlue reagent (Life Technologies) at $37^{\circ} \mathrm{C}$. Fluorescence at 560 nm was measured via Tecan M1000 (Tecan) as readout of cellular metabolic activity.
(1) Kovackova, S.; Chang, L.; Bekerman, E.; Neveu, G.; Barouch-Bentov, R.; Chaikuad, A.; Heroven, C.; Šála, M.; De Jonghe, S.; Knapp, S.; Einav, S.; Herdewijn, P. J. Med. Chem. 2015, 58, 3393-3410.
(2) Murray, C.L.; Jones, C.T.; Tassello, J.; Rice, C.M. J. Virol. 2007, 81, 10220-10231.
(3) Lindenbach, B.D.; Evans, M.J.; Syder, A.J.; Wölk, B.; Tellinghuisen, T.L.; Liu, C.C.; Maruyama, T.; Hynes, R.O.; Burton, D.R.; McKeating, J.A.; Rice C.M. Science 2005, 309, 623-626.
(4) Neveu, G.; Barouch-Bentov, R.; Ziv-Av, A.; Gerber, D.; Jacob, Y.; Einav, S.

PLoS Pathog. 2012, 8, e1002845.

NMR spectra of final compounds

Compound $\mathbf{5 b}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{5 b}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $5 \mathrm{c}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $5 \mathrm{c}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $5 \mathbf{d}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{5 d}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{5 e}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{5 e}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $5 \mathbf{f}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{5 f}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound 5 g- ${ }^{1} \mathrm{H}$ NMR spectrum

Compound $5 \mathrm{~g}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound 5 h $-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{5 h}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{5 i}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $5 \mathbf{i}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $5 \mathbf{j}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $5 \mathbf{j}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 b}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 b}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $8 \mathrm{c}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 c}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $8 \mathbf{d}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $8 \mathrm{~d}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 e}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 e}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $8 \mathrm{f}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 f}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 g}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $8 \mathrm{~g}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 i}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 i}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 j}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 j}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 l}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 l}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 m}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $\mathbf{8 m}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $8 \mathbf{n}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $8 \mathbf{n}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $80-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 p}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $8 p-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 q}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $8 \mathrm{r}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $8 \mathrm{r}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $8 \mathbf{s}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $8 \mathrm{~s}-{ }^{13} \mathrm{C}$ NMR spectrum

Compound $\mathbf{8 t}-{ }^{1} \mathrm{H}$ NMR spectrum

Compound $8 \mathrm{t}-{ }^{13} \mathrm{C}$ NMR spectrum

HPLC purity data of final compounds

Purity of final compounds was determined by analytical RP-HPLC analysis on a XBridge column (C-18, $5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$) in combination with a Waters 600 HPLC system and a Waters 2996 photodiode array detector from Waters, Milford, Massachusetts, USA. Elution was done using a gradient mixture of $\mathrm{H}_{2} \mathrm{O}$ containing 0.2% (vol) of TFA (A) and Acetonitrile (B) as indicated in Table S1.

Table S1: Gradient table for RP-HPLC purity check.

	Time (min)	Flow (mL/min)	\%A	\%B
1	0	1.0	100	0
2	5	1.0	100	0
3	20	1.0	0	100
4	30	1.0	0	100

Compound\#	Rf (min)	Purity (\%)
$\mathbf{5 a}$	24.0	99
$\mathbf{5 b}$	22.4	99
$\mathbf{5 c}$	23.0	99
$\mathbf{5 d}$	23.3	97
$\mathbf{5 e}$	23.6	99
$\mathbf{5 f}$	21.9	99
$\mathbf{5 g}$	23.7	99
$\mathbf{5 h}$	25.6	99
$\mathbf{5 i}$	21.0	99
$\mathbf{5 j}$	23.1	97
$\mathbf{8 b}$	24.0	99
$\mathbf{8 c}$	24.6	99
$\mathbf{8 d}$	24.8	99
$\mathbf{8 e}$	25.9	99
$\mathbf{8 f}$	25.6	99
$\mathbf{8 g}$	25.5	99
$\mathbf{8 h}$	25.6	99
$\mathbf{8 i}$	23.0	98
$\mathbf{8 j}$	23.9	99
$\mathbf{8 l}$	19.2	97

$\mathbf{8 m}$	20.3	99
$\mathbf{8 n}$	19.6	96
$\mathbf{8 0}$	22.3	99
$\mathbf{8 p}$	23.0	99
$\mathbf{8 q}$	22.8	96
$\mathbf{8 r}$	18.9	99
$\mathbf{8 s}$	18.4	98
$\mathbf{8 t}$	23.5	93

