Discovery of a potent and highly fluorescent sirtuin inhibitor

Yeong Keng Yoon^{a*}, Mohamed Ashraf Ali^a, Ang Chee Wei^a, Tan Soo Choon^a, Amir Nasrolahi Shirazi^b, Keykavous Parang^b

Supporting information

Table of contents

- (i) Characterization data for the synthesized compounds.
- (ii) Fig. S1. Plots of product formation versus time in the absence and presence of 10 μM of BZD9L1.
- (iii) Fig. S2. Plot of absorbance (346 nm) versus concentration of BZD9L1 in DMSO.
- (iv) Fig. S3. Quantum yield (Φ) determination of BZD9L1.
- (v) Fig. S4. Molecular docking comparison between BZD9L1 and compound 4d,e.
- (vi) Table S1. Cell viability after 72h treatment of synthesized compounds 4a-h against HCT-116, MDA-MB-468 and CCRF-CEM cells.
- (vii) Supplementary NMR data
- (viii) Supplementary MS data

Characterization data for synthesized compounds

Ethyl 2-phenyl-1H-benzo[d]imidazole-5-carboxylate (4a):

Obtained as beige solid. Yield: 80%; m.p. 177-178 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.44 (3H, t, *J* = 7.1 Hz), 4.44 (2H, q, *J* = 7.1 Hz), 7.50-7.60 (3H, m), 7.64 (1H, s), 7.95 (1H, dd, *J* = 1.5 Hz, 9 Hz), 8.10 (2H, dd, *J* = 9 Hz), 8.30 (1H, s). ¹³C NMR (125 MHz, CDCl₃): 14.70, 62.12, 128.07, 130.28, 130.49, 131.96, 140.27, 143.22, 152.00, 168.54. ESI-MS: m/z 267.2 [M+H]⁺. Anal. Calc for C₁₆H₁₄N₂O₂: C, 72.16%; H, 5.30%; N, 10.52%. Found : C, 72.20%; H, 5.25%; N, 10.50%.

Ethyl 2-p-tolyl-1H-benzo[d]imidazole-5-carboxylate (4b):

Obtained as red-brown solid. Yield: 87%; m.p. 181-182 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.43 (3H, t, *J* = 7.1 Hz), 2.35 (3H, s), 4.41 (2H, q, *J* = 7.1 Hz), 6.95 (2H, d, *J* = 9 Hz), 7.55 (1H, d, *J* = 9 Hz), 7.69 (1H, dd, *J* = 1.5 Hz, 9 Hz), 7.74 (2H, d, *J* = 9 Hz), 8.21 (1H, s). ¹³C NMR (125 MHz, CDCl₃): 14.58, 25.63, 61.59, 115.73, 118.46, 123.99, 125.12, 130.92, 131.62, 149.25, 153.86, 168.90. ESI-MS: m/z 281.1 [M+H]⁺. Anal. Calc for C₁₇H₁₆N₂O₂: C, 72.84%; H, 5.75%; N, 9.99%. Found : C, 72.67%; H, 5.72%; N, 9.90%.

Ethyl 2-(4-tert-butylphenyl)-1H-benzo[d]imidazole-5-carboxylate (4c):

Obtained as brown solid. Yield: 85%; m.p. 200-201 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.31 (9H, s), 1.42 (3H, t, *J* = 7.1 Hz), 4.39 (2H, q, *J* = 7.1 Hz), 6.90 (2H, d, *J* = 9 Hz), 7.55 (1H, d, *J* = 9 Hz), 7.68 (1H, dd, *J* = 1.5 Hz, 9 Hz), 7.74 (2H, d, *J* = 9 Hz), 8.22 (1H, s). ¹³C NMR (125 MHz, CDCl₃): 14.72, 31.90, 34.75, 62.11, 114.73, 119.05, 124.80, 125.33, 129.24, 130.05, 149.22, 153.73, 168.88. ESI-MS: m/z 323.1 [M+H]⁺. Anal. Calc for C₂₀H₂₂N₂O₂: C, 74.51%; H, 6.88%; N, 8.69%. Found : C, 74.37%; H, 6.62%; N, 8.98%.

Ethyl 2-(4-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (4d):

Obtained as white solid. Yield: 92%; m.p. 209-210 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.45 (3H, t, *J* = 7.2 Hz), 4.43 (2H, q, *J* = 7.2 Hz), 6.88 (1H, d, *J* = 8.4 Hz), 7.49 (2H, d, *J* = 8.4 Hz), 7.59 (2H, d, *J* = 8.4 Hz), 8.08 (1H, dd, *J* = 1.5 Hz, 8.4 Hz), 8.56 (1H, s). ¹³C NMR (75 MHz, CDCl₃): 14.69, 61.56, 105.68, 107.77, 109.20, 111.10, 122.95, 125.60, 153.29, 157.46, 168.58. ESI-MS: m/z 283.1 [M+H]⁺. Anal. Calc for C₁₆H₁₄N₂O₃ : C, 68.11%; H, 5.00%; N, 9.91%. Found : C, 68.12%; H, 5.02%; N, 9.88%.

Ethyl 2-(4-methoxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (4e):

Obtained as beige crystal. Yield: 90%; m.p. 188-189 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.43 (3H, t, *J* = 6.9 Hz), 3.88 (3H, s), 4.53 (2H, t, *J* = 6.9 Hz), 7.06 (2H, d, *J* = 9 Hz), 7.47 (1H, d, *J* = 9 Hz), 7.75 (2H, d, *J* = 9 Hz), 8.04 (1H, dd, *J* = 1.5 Hz, 9 Hz), 8.54 (1H, s). ¹³C NMR (75 MHz, CDCl₃): 14.69, 56.22, 61.45, 109.75, 109.98, 121.12, 122.18, 123.40, 150.05, 151.59, 168.67. ESI-MS: m/z 297.1 [M+H]⁺. Anal. Calc for C₁₇H₁₆N₂O₃ : C, 68.88%; H, 5.50%; N, 4.47%. Found : C, 68.90%; H, 5.41%; N, 4.50%.

Ethyl 2-(4-(dimethylamino)phenyl)-1H-benzo[d]imidazole-5-carboxylate (4f):

Obtained as brown solid. Yield: 84%; m.p. 220-221 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.42 (3H, t, *J* = 7.1 Hz), 3.05 (3H, s), 4.38 (2H, q, *J* = 7.1 Hz), 6.86 (2H, d, *J* = 9 Hz), 7.55 (1H, d, *J* = 9 Hz), 7.70 (1H, dd, *J* = 1.5 Hz, 9 Hz), 7.73 (2H, d, *J* = 9 Hz), 8.20 (1H, s). ¹³C NMR (125 MHz, CDCl₃): 14.72, 40.30, 62.07, 113.06, 117.27, 124.80, 125.33, 129.24, 129.82, 148.02, 153.69, 168.86. ESI-MS: m/z 310.1 [M+H]⁺. Anal. Calc for C₁₈H₁₉N₃O₂ : C, 69.95%; H, 6.17%; N, 13.59%. Found : C, 69.90%; H, 6.21%; N, 13.62%.

Ethyl 2-(4-(piperidin-1-yl)phenyl)-1H-benzo[d]imidazole-5-carboxylate (4g/BZD9L1):

Obtained as brown solid. Yield 83%; m.p. 190-191 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.38 (3H, t, *J* = 7.0 Hz), 1.67 (6H, t, *J* = 6.5 Hz), 3.16 (4H, t, *J* = 6.5 Hz), 4.43 (2H, q, *J* = 7.0 Hz), 6.72 (2H, d, *J* = 8.5 Hz), 7.54 (1H, d, *J* = 8.5 Hz), 7.88 (1H, dd, *J* = 1.5 Hz, 8.5 Hz), 7.95 (2H, d, *J* = 8.5 Hz), 8.23 (1H, s). ¹³C NMR : 14.35, 24.19, 25.30, 48.58, 61.02, 114.30, 114.41, 115.91, 124.52, 125.00, 128.48, 135.60, 153.18, 153.89, 166.96. ESI-MS: m/z 350.2 [M+H]⁺. Anal. Calc. for C₂₁H₂₃N₃O₂ : C, 72.18%; H, 6.63%; N, 12.03%. Found : C, 72.15; H, 6.61; N, 12.04%.

Ethyl 2-(4-morpholinophenyl)-1H-benzo[d]imidazole-5-carboxylate (4h):

Obtained as orange-brown solid. Yield 73%; m.p. 204-205 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.44$ (3H, t, J = 7.0 Hz), 3.22 (4H, t, J = 5.0), 3.85 (4H, t, J = 5.0 Hz), 4.43 (2H, q, J = 7.0 Hz), 6.80 (2H, d, J = 8.5 Hz), 7.47 (1H, d, J = 8.5 Hz), 7.90 (1H, dd, J = 1.5 Hz, 8.5 Hz), 7.98 (1H, d, 2H, d, J = 8.5 Hz), 8.27 (1H, s). ¹³C NMR : 14.34, 47.97, 60.90, 66.67, 112.08, 114.54, 116.01, 124.70, 123.65, 127.48, 135.76, 151.22, 153.88, 167.95. ESI-MS: m/z 352.2 [M+H]⁺. Anal. Calc. for C₂₀H₂₁N₃O₃ : C, 68.36%; H, 6.02%; N, 11.96%. Found : C, 68.31; H, 6.07; N, 11.93%.

Fig. S1. Plots of product formation versus time in the absence and presence of 10 μ M of BZD9L1. AFU stands for arbitrary fluorescence unit.

Fig. S2. Plot of absorbance (346 nm) versus concentration of **BZD9L1** in DMSO. Molar absorptivity (molar extinction coefficient, ε) was determined by the gradient of the slope using Beer Lambert equation. Absorbance readings were taken in a quartz cuvette (10 mm path length), using Agilent 8453 UV-visible spectrophotometer. The excitation wavelength was set at 346 nm.

Fig. S3. Quantum yield (Φ) determination of BZD9L1. Quinine sulphate was used as reference.

AFU stands for arbitrary fluorescence unit.

Fig. S4. BZD9L1 (green), **4d** (red) and **4e** (yellow) were docked into the active site of SIRT2 (PDB code: 3ZGV). It showed that **BZD9L1** were optimally fitted into the ADPr binding site (blue) while the phenolic substituent (**4d**) and the anisole substituent (**4e**) were shifted out from the ADPr binding site. This resulted in less favourable complexes and weaker inhibitory SIRT2 activities for **4d** and **4e**.

	CCRF-CEM		HCT116		MDA-MB-468	
	Cell Viability (%)	S.D. (%)	Cell Viability (%)	S.D. (%)	Cell Viability (%)	S.D. (%)
DMSO	100.00	5.54	100.00	6.01	100.00	8.06
4a	58.29	2.24	29.69	9.44	49.27	6.83
4b	61.24	5.44	48.40	12.80	89.08	0.75
4c	82.16	8.59	54.19	4.36	54.62	8.32
4d	85.49	5.37	77.07	3.59	76.48	12.39
4e	87.37	4.66	75.60	2.10	82.76	2.24
4f	49.45	3.41	29.74	1.41	31.10	0.79
4g/BZD9L1	36.26	0.34	15.90	2.04	33.98	0.49
4h	37.81	11.33	54.48	3.93	42.58	4.89

Table S1. Cell viability after 72h treatment of synthesized compounds **4a-h** against HCT-116,MDA-MB-468 and CCRF-CEM cells.

Supplementary NMR data

Fig. S5. ¹H NMR of BZD9L1

Fig. S6. ¹³C NMR of BZD9L1

Fig. S7. 2D HMQC for BZD9L1.

Fig. S8. Direct infusion MS data for BZD9L1.