Electronic Supplementary Material (ESI) for MedChemComm. This journal is © The Royal Society of Chemistry 2015

- 1 Supporting Information
- 2

³ Development of Subnanomolar Fluorinated (2-Pyrrolidin-

- ⁴ 1-yl)imidazo[1,2-*b*]pyridazine pan-Trk Radiolabeled
- ⁵ Inhibitors as Candidate PET Imaging Probes
- 6
- 7 Vadim Bernard-Gauthier^{1*}, Justin J. Bailey¹, Arturo Aliaga², Alexey Kostikov³, Pedro Rosa-Neto²,
- 8 Melinda Wuest¹, Garrett M. Brodeur⁴, Frank, Wuest¹, Ralf Schirrmacher¹
- 9
- 10 1. Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB,
- 11 Canada, T6G 1Z2.
- 12 2. Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental
- Health University Institute, 6875 Boulevard LaSalle, Montreal, QC, Canada, H4H 1R3.
- 14 3. McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801
- 15 University Street, Montreal, QC, Canada, H3A 2B4.
- 16 4. Oncology Research, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd.,
- 17 Philadelphia, PA, USA, 19104-4302.
- 18
- 19

20 CONTENT OF SUPPORTING INFORMATION

- 21 1. GENERAL INFORMATION
- 22 2. ORGANIC SYNTHESES (Scheme S1)
- 23 3. DOCKING STUDIES (Figure S1-S2)
- 24 4. RADIOCHEMISTRY (Figures S3-S10)
- 25 5. BIOLOGICAL STUDIES (Figure S11-S22; Table S1-S4)
- 26 6. NMR SPECTRUM
- 27 7. CRYSTALLOGRAPHIC DATA FOR COMPOUND 22
- 28 8. REFERENCES
- 29
- 30
- -
- 31
- 32

35 2.1 Material and Methods

36

37 General Procedures. All moisture sensitive reactions were carried out in oven-dried flasks under nitrogen atmosphere with dry solvents. Reagents and solvents were purchased at the highest commercial 38 quality from Fisher, Sigma-Aldrich, Alfa-Aesar, Synthonix or Oakwood Products and were used without 39 40 further purification unless specified otherwise. GNF-5837 (\geq 98%) was purchased from EMD Millipore. 41 2-Fluoroethyl 4-methylbenzenesulfonate (32) was synthesized as previously described. Organic solutions 42 were concentrated under reduced pressure on a Heidolph rotary evaporator. In general, reactions were magnetically stirred and monitored by TLC performed on pre-coated glass-backed TLC plates (Analtech, 43 44 250 microns) and chromatographic purification of products was accomplished using flash 45 chromatography on Alfa-Aesar silica gel (230-450 mesh). TLC visualization was performed by fluorescence quenching, KMnO₄ or ninhydrin. ¹H NMR and ¹³C NMR spectra were recorded on a 46 Agilent/Varian DD2 MR two channel 400 MHz spectrometer, a Agilent/Varian VNMRS two-channel 500 47 MHz spectrometer or a Agilent/Varian Inova four-channel 500 MHz spectrometer in CDCl₃ or d₆-DMSO 48 49 and peak positions are given in parts per million using TMS as internal standard. Peaks are reported as: s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, b = broad; coupling constant(s) in 50 51 Hz; integration. High Resolution Mass Spectra (HRMS) analysis was obtained from the Mass 52 Spectrometry Facility of the Chemistry Department of the University of Alberta (Agilent Technologies 53 6220 oaTOF). Compounds tested in vitro were >95% pure (HPLC). Crystallographic analyses were 54 performed by the X-Ray crystallography laboratory at the Chemistry Department of the University of 55 Alberta. .

56 **2.2** Chemical Synthesis.

57 Scheme S1. Syntheses of amides 11-27^{*a*}

 $S_{1} \xrightarrow{CO_{2}Et} \xrightarrow{a} F \xrightarrow{co_{2}e_{1}} \xrightarrow{N} = N \xrightarrow{CO_{2}Et} \xrightarrow{b} F \xrightarrow{co_{2}e_{1}} \xrightarrow{N} = N \xrightarrow{NHR} O$ $S_{1} \qquad 10 \qquad 11-12$ $\downarrow c$ $F \xrightarrow{co_{2}e_{1}} \xrightarrow{N} = N \xrightarrow{CO_{2}H} \xrightarrow{d} F \xrightarrow{co_{2}e_{1}} \xrightarrow{N} = N \xrightarrow{NR_{1}R_{2}} O$ $9 \qquad 13-27$

^a Reagents and conditions: (a) 2-(3-Fluorophenyl)pyrrolidine, KF, DMSO, 100°C, 22 h (77%). (b)
ammonia solution (7.0 M in methanol) or methylamine solution (33 wt. % in absolute ethanol), rt, 15 h
(96-100%). (c) EtOH, H₂O, KOH, rt, 3 h (72%). (d) amine, HATU, DIPEA, DMF, rt, 12-14 h (43-100%).

63

Ethyl 6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxylate (10). To 64 a solution of ethyl 6-chloroimidazo[1,2-b]pyridazine-3-carboxylate (1.13 g, 5.0 mmol) in DMSO (6.0 65 mL) was added KF (872 mg, 15 mmol). This reaction mixture was heated at 100°C and 2-(3-66 67 fluorophenyl)pyrrolidine (991 mg, 6.0 mmol) was added. After stirring the reaction mixture at this temperature for 12 h, additional portions of 2-(3-fluorophenyl)pyrrolidine (165 mg, 1.0 mmol) and KF 68 (58 mg, 1.0 mmol) were successively added. Third portions of 2-(3-fluorophenyl)pyrrolidine (165 mg, 69 1.0 mmol) and KF (58 mg, 1.0 mmol) were added 5 h after the second addition step and the reaction 70 mixture was stirred at 100°C for an additional 5 h. The heterogeneous mixture was cooled at room 71 72 temperature, poured into water and extracted with EtOAc. The combined organic layers were washed 73 with brine, dried over Na_2SO_4 and concentrated in *vacuo*. The crude residue was purified by flash chromatography (gradient 1/19/80 Et₃N/hexane/EtOAc - 1/99; Et₃N /EtOAc) and afforded the title 74 compound (1.37 g, 77%) as a pale yellow solid. R_f 0.15 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 75 MHz, CDCl₃) δ 8.10 (s, 1H), 7.60 - 7.55 (m, J = 9.9 Hz, 1H), 7.29 - 7.22 (m, 1H), 7.01 (d, J = 7.5 Hz, 76 1H), 6.95 - 6.88 (m, 2H), 6.49 - 6.43 (m, J = 9.9 Hz, 1H), 5.01 - 4.94 (m, 1H), 4.38 (q, J = 7.1 Hz, 2H), 77

3.96 (s, 1H), 3.80 (s, 1H), 2.51 - 2.42 (m, 1H), 2.08 - 1.96 (m, 3H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.11 (d, J = 247.0 Hz, 1C), 159.24, 152.87, 146.01 (d, J = 6.5 Hz, 1C), 139.35, 138.86, 130.37 (br d, J = 8.0 Hz, 1C), 125.75, 121.32 (d, J = 2.6 Hz, 1C), 119.54, 114.19 (br d, J = 21.2Hz, 1C), 112.76 (br d, J = 22.2 Hz, 1C), 111.82, 61.91, 60.25, 48.58, 35.97, 22.84, 14.43; HRMS: Calcd m/z for C₁₉H₂₀FN₄O₂ [M+H]⁺ : 355.1565, Found: 355.1566.

83

6-(2-(3-Fluorophenyl)pyrrolidin-1-yl)imidazo[1.2-b]pyridazine-3-carboxylic acid (9). To a solution 84 of ethyl 6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxylate (1.06 g, 3 mmol) in 85 86 ethanol (20 mL) and water (1 mL) was added KOH (842 mg, 15 mmol). The reaction mixture was stirred 87 at room temperature for 3 h and evaporated to dryness. The residue was diluted with water (10 mL) and 88 the pH was adjusted to 5-6 using concentrated hydrochloric acid. The aqueous phase was extracted with CH₂Cl₂ (2 X 25 mL) and EtOAc (2 X 25 mL). The combined organic layers were washed with brine, 89 90 dried over Na₂SO₄ and concentrated in vacuo to afford the title compound (701 mg, 72%) as a white yellow solid. R_f 0.10 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, DMSO-d₆) δ 7.98 (s, 1H), 7.86 91 (d, J = 9.9 Hz, 1H), 7.37 - 7.27 (m, 1H), 7.16 - 7.06 (m, 2H), 7.06 - 6.97 (m, 1H), 7.02 (br t, J = 8.4 Hz, 92 93 1H), 5.14 (dd, J=2.8, 8.1 Hz, 1H), 3.93 - 3.85 (m, 1H), 3.63 (br d, J=10.4 Hz, 1H), 2.47 - 2.35 (m, 1H), 2.03 - 1.93 (m, 2H), 1.93 - 1.83 (m, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 162.75 (d, J = 243.6 Hz, 1C), 94 159.70, 152.73, 147.11 (d, J = 6.5 Hz, 1C), 138.98, 138.43, 130.89 (br d, J = 8.5 Hz, 1C), 126.50, 122.35 95 (br d, J = 2.1 Hz, 1C), 119.67, 114.15 (d, J = 20.9 Hz, 1C), 113.36 (br d, J = 21.9 Hz, 1C), 113.06, 61.46, 96 97 48.74, 35.63, 23.05; HRMS: Calcd *m*/*z* for C₁₇H₁₅FN₄NaO₂ [M+Na]⁺: 349.1074, Found: 349.1071. 98

General procedure A: Coupling of carboxylic acid 10 with amines. DIPEA (44 μL, 0.25 mmol, 2.5
equiv) was added to a solution of 6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3carboxylic acid (33 mg, 0.10 mmol, 1 equiv) in DMF (1 mL). Solutions of HATU (38 mg, 0.10 mmol, 1

equiv) and the appropriate amine (0.12 mmol, 1.2 equiv; free amine or hydrochloric salt) in DMF (0.5 mL) were successively added dropwise. The reaction mixture was stirred at room temperature for 12 - 14h. After completion, the reaction mixture was diluted with EtOAc (100 mL), washed with water (25 mL) and brine (25 mL). The organic phase was dried over Na₂SO₄ and concentrated in *vacuo*. The crude residue was purified by flash chromatography (gradient 1/99; MeOH/ CH₂Cl₂- 3/97; MeOH/ CH₂Cl₂).

107

108 *N*-(2-Fluoroethyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-*b*]pyridazine-3-carboxamide

109 (13). The general procedure A was used with 2-fluoroethylamine hydrochloride. The title compound was obtained as a pale yellow solid (37 mg, quantitative). R_f 0.27 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR 110 111 $(498 \text{ MHz, CDCl}_3) \delta 8.91 \text{ (br s, 1H)}, 8.21 \text{ (br s, 1H)}, 7.72 \text{ (br d, } J = 9.8 \text{ Hz, 1H)}, 7.35 - 7.29 \text{ (m, 1H)}, 7.01 \text{$ (d, J = 7.8 Hz, 1H), 6.97 (dt, J = 1.9, 8.4 Hz, 1H), 6.92 (d, J = 9.7 Hz, 1H), 6.59 (br d, J = 7.6 Hz, 1H),112 5.07 (br d, J = 8.0 Hz, 1H), 4.58 (td, J = 4.1, 47.3 Hz, 2H), 3.95 - 3.80 (m, 2H), 3.73 - 3.66 (m, 1H), 3.57 113 114 (br s, 1H), 2.57 - 2.47 (m, 1H), 2.17 - 2.01 (m, 3H); 13 C NMR (125 MHz, CDCl₃) δ 163.16 (d, J = 247.2 Hz, 1C), 159.38, 151.87, 145.27 (d, J = 6.2 Hz, 1C), 136.32 (br s, 1C), 135.42, 130.55 (d, J = 8.3 Hz, 1C), 115 126.96, 121.10, 121.02 (br d, J = 2.8 Hz, 1C), 114.41 (br d, J = 21.2 Hz, 1C), 112.49 (br d, J = 21.9 Hz, 116 117 1C), 110.70, 83.17 (d, J = 166.2 Hz, 1C), 62.02, 48.61, 39.14 (d, J = 19.4 Hz, 1C), 35.80, 22.84; HRMS: Calcd m/z for C₁₉H₁₉F₂N₅NaO [M+Na]⁺: 394.1450, Found: 394.1453. 118

119

120 6-(2-(3-Fluorophenyl)pyrrolidin-1-yl)-*N*-(3-fluoropropyl)imidazo[1,2-*b*]pyridazine-3-carboxamide

(14). The general procedure A was used with 2-fluoropropylamine hydrochloride. The title compound
was obtained as a beige solid (36 mg, 92 %). R_f 0.27 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz,
CDCl₃) δ 8.47 (br s, 1H), 8.17 (s, 1H), 7.72 (br d, J = 9.8 Hz, 1H), 7.33 (dt, J = 5.8, 7.9 Hz, 1H), 7.01 (d,
J = 7.7 Hz, 1H), 6.96 (dt, J = 2.1, 8.4 Hz, 1H), 6.93 - 6.84 (m, 3H), 6.70 - 6.55 (m, 1H), 5.14 - 5.01 (m,
1H), 4.64 - 4.42 (m, 2H), 3.94 - 3.85 (m, 1H), 3.72 - 3.63 (m, 1H), 3.59 - 3.49 (m, 1H), 3.39 (br s, 1H),

126 2.57 - 2.48 (m, 1H), 2.16 - 2.08 (m, 2H), 2.07 - 2.01 (m, 1H), 2.01 - 1.81 (m, 2H); ¹³C NMR (125MHz, 127 CDCl₃) δ = 163.17 (d, *J* = 247.2 Hz, 1C), 159.44, 151.90, 145.23 (d, *J* = 6.2 Hz, 1C), 137.10, 130.68 (br 128 d, *J* = 8.0 Hz, 1C), 126.97, 122.43, 120.94, 120.92, 114.37 (d, *J* = 21.2 Hz, 1C), 112.30 (d, *J* = 22.2 Hz, 129 1C), 110.50, 81.97 (d, *J* = 164.4 Hz, 1C), 62.07, 48.69, 35.73, 35.28 (d, *J* = 5.2 Hz, 1C), 30.59 (d, *J* = 130 19.4 Hz, 1C), 22.91; HRMS: Calcd *m*/*z* for C₂₀H₂₁F₂N₅NaO [M+Na]⁺ : 408.1606, Found: 408.1608.

131

132 *N*-((3-Fluorocyclobutyl)methyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-

133 carboxamide (15). The general procedure A was used with (3-fluorocyclobutyl)methanamine hydrochloride. The title compound was obtained as a white solid (37 mg, 90 %). R_f 0.25 (1:1:98 134 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 8.47 (br s, 1H), 8.18 (s, 1H), 7.72 (br d, J = 9.7 Hz, 135 136 1H), 7.33 (dt, J = 5.9, 8.0 Hz, 1H), 7.06 - 6.96 (m, 2H), 6.90 (td, J = 1.9, 9.7 Hz, 1H), 6.60 (br d, J = 8.6Hz, 1H), 5.25 - 5.08 (m, 1H), 5.05 (br d, J = 7.3 Hz, 1H), 3.92 - 3.82 (m, 1H), 3.73 - 3.61 (m, J = 8.1 Hz, 2H = 8.1 (m, J = 8.1 Hz, 2H = 8.1 137 138 1H), 3.53 - 3.42 (m, 1H), 3.34 (br s, 1H), 2.44 - 2.44 (m, 1H), 2.59 - 2.42 (m, 2H), 2.41 - 2.28 (m, 2H), 2.20 - 2.20 (m, 1H), 2.28 - 2.04 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 163.19 (d, J = 247.5 Hz, 1C), 139 140 159.47, 152.00, 145.08 (d, J = 6.2 Hz, 1C), 137.78, 137.22, 130.65 (br d, J = 8.3 Hz, 1C), 127.02, 122.38, 141 120.92 (d, J = 2.6 Hz, 1C), 114.48 (br d, J = 21.2 Hz, 1C), 112.42 (d, J = 21.9 Hz, 1C), 110.53, 87.30 (br d, J = 206.5 Hz, 1C), 62.10, 48.62, 43.31, 35.79, 33.88 (d, J = 4.4 Hz, 1C), 33.71 (d, J = 4.6 Hz, 1C), 142 27.62 (br d, J = 11.9 Hz, 1C), 22.81; HRMS: Calcd m/z for $C_{22}H_{23}F_2N_5NaO [M+Na]^+$: 434.1763, Found: 143 434.1767. 144

145

146 *N*-(3-Fluorocyclobutyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-

carboxamide (16). The general procedure A was used with 3-fluorocyclobutanamine hydrochloride (cistrans). The title compound was obtained as a white solid (35 mg, 88 %). R_f 0.25 (1/1/98; Et₃N/MeOH/ CH₂Cl₂). The NMR characterization was achieved on the inseparable diastereoisomeric mixture.

Whenever distinguishable, chemical shifts given are for one isomer with those of the second one listed in 150 square brackets. ¹H NMR (498 MHz, CDCl₃) δ 8.77 (d, J = 34.6 Hz, 1H), 8.18 (s, 1H), 7.69 (br d, J = 9.9 151 Hz, 1H), 7.41 - 7.29 (m, 1H), 7.08 - 6.94 (m, 2H), 6.93 - 6.85 (m, 1H), 6.55 (br d, J = 8.6 Hz, 1H), 5.19 152 153 (d, J = 56.8 Hz, 0.5H), 5.09 (br t, J = 7.0 Hz, 1H), [4.86 (q, J = 6.6, 55.7 Hz, 0.5H)], 4.74 - 4.62 (m, 0.5H), [4.21 (br sxt, J = 7.8 Hz, 0.5H)], 3.95 - 3.84 (m, 1H), 3.76 - 3.65 (m, 1H), 3.01 - 2.90 (m, 1H), 2.76 154 -2.60 (m, 1H), 2.59 -2.50 (m, 1H), 2.42 -1.94 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 163.19 (d, J =155 156 247.8 Hz, 1C), 158.89, [158.57], 152.09, [152.06], 144.73, 137.84, 137.31, 130.81 (d, J = 8.3 Hz, 1C), 157 [130.67 (br d, J = 8.0 Hz, 1C)], 127.03, [127.00], 122.31, [122.14], 121.23 (br d, J = 2.6 Hz, 1C), [121.10](br d, J = 2.6 Hz, 1C)], 114.54 (br d, J = 21.2 Hz, 1C), 112.62 (d, J = 4.9 Hz, 1C), [112.47 (br d, J = 4.9 Hz, 1C)] 158 Hz, 1C)], 110.71, [110.62], 86.84 (br d, J = 200.3 Hz, 1C), [81.67 (br d, J = 210.6 Hz, 1C)], 61.84, 48.53, 159 [48.46], 40.57 (d, J = 8.3 Hz, 1C), 39.97 (d, J = 20.1 Hz, 1C), [39.83 (d, J = 21.2 Hz, 1C)], 38.55 (d, J = 21.2 Hz, 1C)] 160 161 3.4 Hz, 1C), [38.37 (br d, *J* = 3.6 Hz, 1C)], 35.84, [35.80], [34.35 (br d, *J* = 23.0 Hz, 1C)], 22.74, [22.70]; 162 HRMS: Calcd for $C_{21}H_{21}F_2N_5NaO [M+Na]^+$: 420.1606, Found: 420.1610.

163

164 (3-Fluoroazetidin-1-yl)(6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazin-3-

165 yl)methanone (17). The general procedure A was used with 3-fluoroazetidine hydrochloride. The title compound was obtained as a white solid (36 mg, 95 %). R_f 0.27 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR 166 (498 MHz, CDCl₃) δ 7.81 (s, 1H), 7.60 (d, J = 9.9 Hz, 1H), 7.27 (br s, 1H), 7.01 (br d, J = 7.7 Hz, 1H), 167 6.92 (br d, J = 9.0 Hz, 2H), 6.51 (br d, J = 9.9 Hz, 1H), 5.23 (br d, J = 59.7 Hz, 1H), 5.02 (d, J = 7.0 Hz, 168 169 1H), 4.50 - 4.17 (m, 4H), 4.00 - 3.89 (m, 1H), 3.78 - 3.69 (m, 1H), 2.53 - 2.38 (m, 1H), 2.11 - 1.94 (m, 170 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.12 (d, J = 247.0 Hz, 1C), 161.37, 152.73, 138.07, 135.43, 130.44, 130.38, 125.96, 121.56, 121.22 (d, J = 2.6 Hz, 1C), 114.19 (d, J = 21.2 Hz, 1C), 112.68 (br d, J = 21.2 Hz, 1C), 12.68 (br d, J = 21.2 Hz, 12.68 (br d, J = 21.2 H 171 172 22.2 Hz, 1C), 111.30, 82.43 (br d, *J* = 204.7 Hz, 1C), 61.92, 48.71, 38.58, 36.43, 35.78, 22.84; HRMS: Calcd m/z for C₂₀H₂₀F₂N₅O [M+H]⁺ : 384.1630, Found: 384.1632. 173

175 *N*-(4,4-Difluorocyclohexyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-*b*]pyridazine-3-

176 carboxamide (18). The general procedure A was used with 4,4-difluorocyclohexanamine hydrochloride. 177 The title compound was obtained as a white solid (30 mg, 68 %). R_f 0.22 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 8.55 (br s, 1H), 8.19 (s, 1H), 7.70 (br d, J = 9.9 Hz, 1H), 7.34 (dt, J = 5.9, 178 179 7.9 Hz, 1H), 7.01 (d, J = 7.7 Hz, 1H), 6.97 (dt, J = 2.0, 8.2 Hz, 1H), 6.87 (br d, J = 9.5 Hz, 1H), 6.55 (br 180 d, J = 8.6 Hz, 1H), 5.06 (br d, J = 7.7 Hz, 1H), 4.18 - 4.07 (m, 1H), 3.90 - 3.81 (m, 1H), 3.67 (dt, J = 7.1, 9.6 Hz, 1H), 2.52 (s, 1H), 2.23 - 1.81 (m, 9H), 1.68 - 1.51 (m, 2H), 1.45 - 1.29 (m, 1H); ¹³C NMR (125 181 182 MHz, CDCl₃) δ 163.19 (d, J = 247.5 Hz, 1C), 158.69, 152.10, 144.69, 137.86, 137.28, 130.73 (br d, J = 247.5 Hz, 1C), 158.69, 152.10, 144.69, 137.86, 137.28, 130.73 (br d, J = 247.5 Hz, 1C), 158.69, 152.10, 144.69, 137.86, 137.28, 130.73 (br d, J = 247.5 Hz, 1C), 158.69, 152.10, 144.69, 137.86, 13 8.3 Hz, 1C), 127.03, 122.34, 121.23 (d, J = 2.8 Hz, 1C), 114.49 (br d, J = 21.2 Hz, 1C), 112.53 (br d, J = 183 184 22.2 Hz, 1C), 110.63, 61.82, 48.51, 45.54, 38.59, 35.80, 32.43 (br t, J = 24.8 Hz, 1C), 32.36 (br t, J = 24.6 Hz, 1C), 28.92 (br dd, J = 9.3, 30.7 Hz, 1C), 22.69; HRMS: Calcd m/z for $C_{23}H_{25}F_3N_5O [M+H]^+$: 185 444.2006, Found: 444.2009. 186

187

188 *N*-(2-(2-Fluoroethoxy)ethyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-

189 carboxamide (19). The general procedure A was used with 2-(2-fluoroethoxy)ethanamine hydrochloride. 190 The title compound was obtained as a white solid (41 mg, 98 %). R_f 0.23 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). 191 ¹H NMR (498 MHz, CDCl₃) δ 8.88 (br s, 1H), 8.16 (s, 1H), 7.68 (br d, J = 9.9 Hz, 1H), 7.28 - 7.28 (m, 192 1H), 7.29 (dt, J = 5.9, 8.1 Hz, 1H), 7.03 (d, J = 7.7 Hz, 1H), 6.99 - 6.89 (m, 2H), 6.56 (br d, J = 8.4 Hz, 1H), 5.07 (br d, J = 7.3 Hz, 1H), 4.74 - 4.72 (m, 1H), 4.66 - 4.51 (m, 2H), 3.95 - 3.89 (m, 1H), 3.88 - 3.81 193 (m, 1H), 3.80 - 3.71 (m, 2H), 3.71 - 3.57 (m, 3H), 3.46 (br s, 1H), 2.56 - 2.45 (m, 1H), 2.15 - 1.96 (m, 194 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.12 (d, J = 247.0 Hz, 1C), 159.31, 151.78, 145.54 (d, J = 6.5 Hz, 195 196 1C), 137.74, 137.11, 130.48 (br d, J = 8.0 Hz, 1C), 126.81, 122.39, 121.09 (d, J = 3.1 Hz, 1C), 114.30 (br 197 d, J = 21.2 Hz, 1C), 112.56 (br d, J = 22.2 Hz, 1C), 110.60, 82.89 (d, J = 169.8 Hz, 1C), 70.70, 70.26 (d, 198 J = 19.6 Hz, 1C), 61.90, 48.62, 38.46, 35.71, 22.83; HRMS: Calcd *m*/*z* for C₂₁H₂₃F₂N₅NaO₂ [M+Na]⁺: 199 438.1712, Found: 438.1714.

200

N-(4-Fluorobenzyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxamide 201 202 (20). The general procedure A was used with (4-fluorophenyl)methanamine. The title compound was 203 obtained as a white solid (41 mg, 95 %). R_f 0.20 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.74 (br s, 1H), 8.17 (s, 1H), 7.68 (br d, J = 9.8 Hz, 1H), 7.34 - 7.24 (m, 2H), 7.20 (dt, J = 5.9, 204 205 7.8 Hz, 1H), 7.06 - 6.97 (m, 2H), 6.87 (dd, J = 2.3, 8.4 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.73 (br d, J = 7.9 Hz, 1 9.7 Hz, 1H), 6.55 (d, J = 8.5 Hz, 1H), 4.94 - 4.86 (m, 1H), 4.62 (dd, J = 6.2, 14.8 Hz, 1H), 4.33 (br dd, J = 6.2, 14.8 Hz, 14. 206 5.9, 19.8 Hz, 1H), 3.58 (br s, 1H), 3.46 - 3.30 (m, 1H), 2.48 - 2.35 (m, 1H), 2.05 - 1.89 (m, 3H); ¹³C NMR 207 208 (101 MHz, CDCl₃) δ 163.31 - 163.28 (m, 1C), 163.31 - 163.28 (m, 1C), 163.80 (d, J = 97.0 Hz, 1C), 161.35 (d, J = 95.0 Hz, 1C), 159.17, 151.78, 145.01 (d, J = 6.2 Hz, 1C), 137.22, 134.43 (d, J = 3.3 Hz, 209 210 1C), 130.55 (br d, J = 8.3 Hz, 1C), 129.31 (br d, J = 8.3 Hz, 1C), 126.97, 122.17, 120.78 (br d, J = 2.5 Hz, 211 1C), 115.37 (br d, J = 21.6 Hz, 1C), 114.36 (d, J = 21.1 Hz, 1C), 112.24 (br d, J = 22.0 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 35.67, 22.67; HRMS: Calcd m/z for C₂₄H₂₁F₂N₅NaO [M+Na]⁺ : 456.1606, Found: 212 213 456.1615.

214

215 *N*-(3-Fluorobenzyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-*b*]pyridazine-3-carboxamide

(21). The general procedure A was used with (3-fluorophenyl)methanamine. The title compound was obtained as a white solid (41 mg, 95 %). R_f 0.20 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 8.77 (br s, 1H), 8.22 (s, 1H), 7.73 (br d, *J* = 9.7 Hz, 1H), 7.32 (dt, *J* = 6.1, 7.8 Hz, 1H), 7.22 (br q, *J* = 7.7 Hz, 1H), 7.12 (br d, *J* = 7.5 Hz, 1H), 7.03 (br d, *J* = 9.5 Hz, 1H), 6.99 (dt, *J* = 2.2, 8.4 Hz, 1H), 6.93 - 6.81 (m, 2H), 6.75 (br d, *J* = 9.5 Hz, 1H), 6.60 (br d, *J* = 6.6 Hz, 1H), 4.99 - 4.92 (m, 1H), 4.69 (dd, *J* = 6.2, 15.2 Hz, 1H), 4.42 (br s, 1H), 3.66 (br s, 1H), 3.54 - 3.40 (m, 1H), 2.45 (br qd, *J* = 8.5, 11.8 Hz,

222 1H), 2.02 (dt, J = 4.8, 7.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.09 (br d, J = 247.2 Hz, 1C), 223 163.03 (d, J = 246.2 Hz, 1C), 159.26, 151.83, 145.02 (d, J = 6.2 Hz, 1C), 141.34 (d, J = 6.7 Hz, 1C), 224 137.82, 137.41, 130.57 (br d, J = 8.3 Hz, 1C), 130.13 (d, J = 8.3 Hz, 1C), 127.06, 122.18, 120.77, 114.30 225 (d, J = 21.2 Hz, 1C), 114.13 (br d, J = 20.9 Hz, 1C), 112.32, 112.14, 110.56, 62.04, 48.61, 42.36, 35.67, 226 22.75; HRMS: Calcd *m/z* for C₂₄H₂₂F₂N₅O [M+H]⁺ : 434.1787, Found: 434.1794.

227

228 *N*-(2,4-Difluoro-3-methoxybenzyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-229 carboxamide procedure (2,4-difluoro-3-(22). The general А was used with 230 methoxyphenyl)methanamine. The title compound was obtained as a white solid (22 mg, 46 %). R_f 0.20 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 8.85 (br s, 1H), 8.22 (s, 1H), 7.75 (br d, 231 J=9.6 Hz, 1H), 7.33 - 7.25 (m, 1H), 7.06 - 7.00 (m, 1H), 6.96 - 6.84 (m, 4H), 6.61 (br d, J=9.2 Hz, 1H), 232 5.02 (dd, J=1.2, 8.7 Hz, 1H), 4.69 - 4.62 (m, 1H), 4.54 - 4.43 (m, 1H), 4.06 - 4.03 (m, 3H), 3.84 - 3.76 (m, 1H), 4.64 - 4.65 (m, 1H), 4.65 - 4.65 (m, 2H), 5.65 (m 233 234 1H), 3.64 - 3.56 (m, 1H), 2.56 - 2.47 (m, 1H), 2.13 - 2.02 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta =$ 163.17 (d, J=247.4 Hz, 1C), 159.37, 155.15 (br d, J = 252.1 Hz, 1C), 151.86, 148.25 (d, J = 181.2 Hz, 235 1C), 145.13, 145.08, 137.84, 137.51, 130.61 (br d, J=8.2 Hz, 1C), 127.15, 122.80 (d, J=10.1 Hz, 1C), 236 237 122.20, 120.86 (br d, J = 2.3 Hz, 1C), 114.45 (d, J = 21.1 Hz, 1C), 112.30 (d, J = 21.9 Hz, 1C), 111.82 (br d, J = 19.3 Hz, 1C), 111.79 (br d, J = 19.3 Hz, 1C), 110.57, 62.10, 62.02 - 61.92 (m, 1C), 48.57, 36.60, 238 35.82, 22.84; HRMS: Calcd *m/z* for C₂₅H₂₃F₃N₅NaO₂ [M+Na]⁺ : 504.1618, Found: 504.1623. 239

240

241 *N*-(4-Fluorophenyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-*b*]pyridazine-3-carboxamide

(23). The general procedure A was used with 4-fluoroaniline. The title compound was obtained as a white
solid (18 mg, 43 %). R_f 0.20 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 10.50 (br s,
1H), 8.31 (br s, 1H), 7.73 (d, J = 9.9 Hz, 1H), 7.49 (br s, 2H), 7.33 - 7.28 (m, 1H), 7.05 (t, J = 8.7 Hz,
2H), 7.02 - 6.96 (m, 2H), 6.92 (td, J = 2.0, 9.5 Hz, 1H), 6.58 (br d, J = 8.1 Hz, 1H), 5.12 (br d, J = 8.1 Hz,

246 1H), 4.02 - 3.96 (m, 1H), 3.83 - 3.76 (m, 1H), 2.62 - 2.53 (m, 1H), 2.25 - 2.10 (m, 3H); ¹³C NMR (125 247 MHz, CDCl₃) δ 163.24 (d, J = 247.8 Hz, 1C), 159.37 (d, J = 243.4 Hz, 1C), 157.15, 152.12, 144.68, 248 130.70 (br d, J = 8.3 Hz, 1C), 127.17, 122.14, 122.10 (br s, 1C), 121.13, 121.11, 115.65 (br d, J = 22.7 249 Hz, 1C), 114.64 (d, J=21.4 Hz, 1C), 112.59 (d, J = 22.2 Hz, 1C), 110.91, 62.08, 48.66, 35.86, 22.79; 250 HRMS: Calcd *m/z* for C₂₃H₂₀F₂N₅O [M+H]⁺ : 420.1630, Found: 420.1635.

251

252 *N*-(3-Fluorophenyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxamide 253 (24). The general procedure A was used with 3-fluoroaniline. The title compound was obtained as a white 254 solid (21 mg, 50 %). R_f 0.20 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 10.64 (br s, 1H), 8.29 (s, 1H), 7.69 (br d, J = 9.7 Hz, 1H), 7.57 (br d, J = 6.8 Hz, 1H), 7.33 (br dt, J = 6.0, 7.9 Hz, 1H), 255 256 7.26 (dt, J = 6.6, 8.1 Hz, 1H), 7.18 - 7.06 (m, 1H), 7.03 (d, J = 7.9 Hz, 1H), 7.01 - 6.99 (m, 1H), 6.99 (dt, 257 J = 2.0, 8.4 Hz, 1H), 6.93 (br td, J = 2.1, 9.6 Hz, 1H), 6.81 (ddt, J = 0.7, 2.6, 8.3 Hz, 1H), 6.55 (br d, J =258 9.3 Hz, 1H), 5.12 (br d, J = 7.9 Hz, 1H), 4.03 - 3.95 (m, 1H), 3.85 - 3.75 (m, 1H), 2.66 - 2.55 (m, 1H), 2.16 (br s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.25 (d, J = 247.8 Hz, 1C), 163.00 (d, J = 244.7 Hz, 259 1C), 157.16, 152.14, 144.67 (br d, J = 7.7 Hz, 1C), 139.50 (br d, J = 11.1 Hz, 1C), 138.17, 130.76 (br d, J260 = 8.3 Hz, 1C), 130.01 (br d, J = 9.3 Hz, 1C), 127.10, 122.22, 121.15 (d, J = 2.8 Hz, 1C), 115.41, 114.69 261 (br d, J = 21.2 Hz, 1C), 112.60 (br d, J = 22.2 Hz, 1C), 111.13, 110.82 (br d, J = 21.4 Hz, 1C), 107.74 (br 262 263 d, J=26.6 Hz, 1C), 62.12, 48.66, 35.88, 22.75; HRMS: Calcd m/z for $C_{23}H_{20}F_2N_5O$ [M+H]⁺: 420.1630, 264 Found: 420.1638.

265

266 *N*-(2-Fluorophenyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-*b*]pyridazine-3-carboxamide

267 (25). The general procedure A was used with 2-fluoroaniline. The title compound was obtained as a white

268 solid (41 mg, quantitative). $R_f 0.19$ (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 10.73

- 269 (br s, 1H), 8.58 (t, J = 7.9 Hz, 1H), 8.35 (s, 1H), 8.79 8.09 (m, 1H), 7.69 (d, J = 9.9 Hz, 1H), 7.31 7.25
- 270 (m, 1H), 7.24 7.19 (m, 1H), 7.19 7.09 (m, 3H), 7.04 6.99 (m, 1H), 6.96 (dt, *J* = 2.3, 8.4 Hz, 1H), 6.91

(td, J = 1.8, 9.5 Hz, 1H), 6.51 (d, J = 9.9 Hz, 1H), 5.07 (dd, J = 1.7, 8.0 Hz, 1H), 4.09 - 4.01 (m, 1H), 3.89 - 3.81 (m, 1H), 2.62 - 2.52 (m, 1H), 2.19 - 2.04 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.22 (d, J =247.8 Hz, 1C), 157.32, 152.31, 152.87 (d, J = 242.8 Hz, 1C), 145.19 (d, J = 5.9 Hz, 1C), 138.41, 138.19, 130.65 (br d, J = 8.5 Hz, 1C), 126.89, 126.66, 124.67 (d, J = 3.1 Hz, 1C), 124.24 (br d, J = 8.0 Hz, 1C), 122.88, 122.51, 121.08 (d, J = 3.1 Hz, 1C), 114.74 (d, J = 19.1 Hz, 1C), 114.55 (d, J = 21.2 Hz, 1C), 112.54 (br d, J = 22.2 Hz, 1C), 111.39, 62.30, 48.58 (d, J = 9.8 Hz, 1C), 36.04, 22.78; HRMS: Calcd *m/z* for C₂₃H₂₀F₂N₅O [M+H]⁺: 420.1630, Found: 420.1636.

278

279 *N*-(3-Fluoro-4-methoxyphenyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-

280 carboxamide (26). The general procedure A was used with 3-fluoro-4-methoxyaniline. The title 281 compound was obtained as a white solid (45 mg, quantitative). $R_f 0.20 (1:1:98 \text{ Et}_3\text{N/MeOH/ CH}_2\text{Cl}_2)$. ¹H NMR (498 MHz, CDCl₃) δ 10.45 (br s, 1H), 8.27 (s, 1H), 7.69 (br d, J = 9.9 Hz, 1H), 7.48 (br s, 1H), 7.31 282 (dt, J = 6.0, 7.9 Hz, 1H), 7.10 (br d, J = 4.4 Hz, 1H), 7.01 (td, J = 0.7, 7.7 Hz, 1H), 6.98 (dt, J = 2.6, 8.5)283 Hz, 2H), 6.95 - 6.84 (m, 2H), 6.55 (br d, J = 8.2 Hz, 1H), 5.11 (br d, J = 7.9 Hz, 1H), 3.97 (br s, 1H), 3.89 284 (s, 3H), 3.78 (br d, J = 19.4 Hz, 1H), 2.65 - 2.54 (m, 1H), 2.24 - 2.11 (m, 3H); ¹³C NMR (125 MHz, 285 286 $CDCl_3$) δ 165.22, 163.23 (d, J = 247.8 Hz, 1C), 157.01, 152.08, 151.09, 149.10 - 149.10 (m, 1C), 150.10 (br d, J = 247.8 Hz, 1C), 144.47 (br d, J = 63.7 Hz, 1C), 131.41 (br d, J = 7.5 Hz, 1C), 131.37 - 131.29 287 (m, 1C), 131.37 - 131.29 (m, 1C), 130.73 (br d, J = 8.5 Hz, 1C), 127.04, 122.29, 121.13 (br d, J=2.6 Hz, 120.14), 127.04, 122.29, 121.13 (br d, J=2.6 Hz, 120.14), 127.04, 122.29, 120.14), 127.04, 120.14), 127.04, 120.14, 120.14), 127.04, 120.14), 127.04, 120.14, 120.14), 127.04, 120.14), 127.04, 120.14, 120.14), 127.04, 120.14), 127.04, 120.14), 127.04, 120.14), 127.04, 120.14), 127.04, 120.14), 127.04, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 120.14, 120.14), 12 288 289 1C), 114.64 (br d, J=21.4 Hz, 1C), 113.73, 112.58 (br d, J=21.9 Hz, 1C), 110.97, 62.09, 56.60, 48.64, 35.87, 22.77; HRMS: Calcd m/z for $C_{24}H_{22}F_2N_5O_2$ [M+H]⁺: 450.1736, Found: 450.1746. 290

291

292 *N*-(4-(2-Fluoroethyl)phenyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-

293 carboxamide (27). The general procedure A was used with 4-(2-fluoroethyl)aniline. The title compound

294 was obtained as a white solid (28 mg, 62 %). R_f 0.22 (1:1:98 Et₃N/MeOH/ CH₂Cl₂). ¹H NMR (498 MHz,

 $CDCl_3$) δ 10.54 (br s, 1H), 8.28 (s, 1H), 7.65 (d, J = 9.9 Hz, 1H), 7.57 - 7.42 (m, 2H), 7.33 - 7.28 (m, 1H), 295 7.22 (d, J = 8.2 Hz, 2H), 7.02 - 6.95 (m, 2H), 6.91 (td, J = 1.9, 9.6 Hz, 1H), 6.51 (br d, J = 9.2 Hz, 1H), 296 297 5.09 (br d, J = 8.1 Hz, 1H), 4.65 (td, J = 6.4, 47.1 Hz, 2H), 4.01 - 3.94 (m, 1H), 3.80 - 3.71 (m, 1H), 3.01 (td, J = 6.4, 23.4 Hz, 2H), 2.60 (s, 1H), 2.22 - 2.09 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.22 (d, J = 298 247.5 Hz, 1C), 157.08, 152.05, 144.85, 144.80, 137.89, 136.57, 133.03, 132.98, 130.67 (br d, J = 8.3 Hz, 299 1C), 129.54, 126.96, 121.15 (br d, J = 2.6 Hz, 1C), 120.53, 114.60 (br d, J = 21.2 Hz, 1C), 112.60 (br d, J300 301 = 21.9 Hz, 1C), 110.96, 84.10 (d, J = 168.8 Hz, 1C), 62.08, 48.63, 36.39 (d, J = 20.4 Hz, 1C), 35.87, 302 22.73; HRMS: Calcd m/z for C₂₅H₂₄F₂N₅O [M+H]⁺: 448.1943, Found: 448.1948.

303

6-(2-(3-Fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxamide (11). Ethyl 6-(2-(3-304 fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxylate (89 mg, 0.25 mmol) was dissolved 305 in an ammonia solution (7.0 M in methanol, 5 mL). The reaction mixture was stirred at room temperature 306 307 for 15 h then concentrated and dried in *vacuo* to afford the title compound (78 mg, 96 %) as a white solid. R_f 0.10 (1:99 MeOH/ CH₂Cl₂).¹H NMR (498 MHz, DMSO-d₆) δ 8.04 - 7.87 (m, 2H), 7.87 - 7.72 (m, 1H), 308 7.71 - 7.58 (m, 1H), 7.39 - 7.29 (m, 1H), 7.14 - 6.96 (m, 3H), 6.84 (br s, 1H), 5.17 - 5.05 (m, 1H), 3.93 (br 309 s, 1H), 3.61 (br d, J = 9.6 Hz, 1H), 2.47 - 2.40 (m, 1H), 2.04 - 1.90 (m, 2H), 1.81 (br s, 1H); ¹³C NMR 310 $(126 \text{ MHz}, \text{DMSO-d}_6) \delta 162.41 \text{ (d}, J = 244.1 \text{ Hz}, 1\text{C}), 159.44, 151.75, 146.33 \text{ (d}, J = 6.4 \text{ Hz}, 1\text{C}), 137.43,$ 311 135.99, 130.64 (br d, J = 8.2 Hz, 1C), 126.65, 122.07, 121.58 (br d, J = 2.1 Hz, 1C), 113.74 (br d, J = 1.1 Hz, 1C), 113.74 (br 312 20.9 Hz, 1C), 112.18 (br d, J = 21.4 Hz, 1C), 111.84, 61.23, 48.28, 35.24, 22.50; HRMS: Calcd m/z for 313 314 $C_{17}H_{16}FN_5O[M+H]^+$: 326.1412, Found: 326.1418.

6-(2-(3-Fluorophenyl)pyrrolidin-1-yl)-N-methylimidazo[1,2-b]pyridazine-3-carboxamide (12). Ethyl 316 6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxylate (89 mg, 0.25 mmol) was 317 dissolved in a methylamine solution (33 wt. % in absolute ethanol, 5 mL). The reaction mixture was 318 319 stirred at room temperature for 15 h then concentrated and dried in vacuo to afford the title compound (85 mg, quantitative) as a tan solid. R_f 0.10 (1:99 MeOH/ CH₂Cl₂).¹H NMR (498 MHz, DMSO-d₆) δ 8.18 -320 321 7.98 (m, 1H), 7.95 (br d, J = 9.9 Hz, 1H), 7.87 (s, 1H), 7.37 (dt, J = 6.1, 8.0 Hz, 1H), 7.17 - 7.09 (m, 2H), 322 7.07 - 7.01 (m, 1H), 7.01 - 6.86 (m, 1H), 5.16 (dd, J = 2.7, 8.3 Hz, 1H), 4.00 - 3.93 (m, 1H), 3.68 - 3.60323 (m, 1H), 2.82 - 2.61 (m, 3H), 2.47 - 2.39 (m, 1H), 2.06 - 1.94 (m, 2H), 1.89 - 1.79 (m, 1H); ¹³C NMR $(125 \text{ MHz}, \text{DMSO-d}_6) \delta 162.88 \text{ (br d}, J = 243.9 \text{ Hz}, 1\text{C}), 159.05, 152.10, 146.94 \text{ (br d}, J = 6.2 \text{ Hz}, 1\text{C}),$ 324 137.70, 135.99, 131.12 (d, *J*=8.0 Hz, 1C), 127.17, 122.18, 121.86, 114.11 (br d, *J* = 20.6 Hz, 1C), 112.72 325 (br d, J = 20.1 Hz, 1C), 112.36, 61.68, 48.88, 35.66, 25.63, 23.09; HRMS: Calcd m/z for C₁₈H₁₈FN₅NaO 326 327 [M+Na]⁺: 362.1388, Found: 362.1391.

328

329 tert-Butyl (2-(2-fluoroethoxy)ethyl)carbamate (29). To a solution of N-Boc-ethanolamine (0.75 g, 4.71 330 mmol, 1.03) and 2-fluoroethyl tosylate (1.00 g, 4.58 mmol) in DMF (10 mL) was added NaH (60% disp. in oil, 0.19 g, 4.75 mmol) in portions. After 12 hours, the reaction mixture was diluted with EtOAc and 331 332 water was slowly added. The aqueous layer was extracted with EtOAc and the combined organic phases 333 were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to yield a crude yellow 334 oil. Purification by flash chromatography (gradient 9/1; hexane/EtOAc - 6/4; hexane/EtOAc) yielded 0.47 g of the title compound as clear oil (50%). R_f 0.27 (6:4 hexanes/EtOAc). ¹H NMR (498 MHz, 335 $CDCl_3$) δ 4.94 (br s, 1H), 4.62 - 4.47 (m, 2H), 3.75 - 3.65 (m, 2H), 3.57 (t, J = 5.2 Hz, 2H), 3.33 (br q, J =336 5.1 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 155.95, 82.95 (d, J = 169.0 Hz, 1C), 79.21, 337 70.43, 70.08 (d, J = 19.6 Hz, 1C), 28.38; HRMS: Calcd m/z for C₉H₁₈FNNaO₃ [M+Na]⁺ : 230.1163, 338 339 Found: 230.1164.

tert-Butyl (4-(2-hydroxyethyl)phenyl)carbamate (32). To a solution of 2-(4-aminophenyl)ethanol (1.0 350 351 g, 7.3 mmol) in THF (20 mL) at 0°C was added Et₃N (1.01 mL, 7.3 mmol) followed by Boc₂O in 3 portions (1.59 g, 7.3 mmol). The reaction mixture was left to warm to room temperature and stirred 352 353 overnight. The mixture was diluted with EtOAc and washed with water. The aqueous phase was further 354 extracted with EtOAc and the combined organic phases were washed with brine, dried over Na_2SO_4 , filtered and concentrated in vacuo. The crude product was purified by flash chromatography (20% 355 356 EtOAc/CH₂Cl₂) to afford 1.47 g of the title compound as a white solid (85%). R_f 0.35 (1:4 EtOAc/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 7.4 Hz, 2H), 6.47 357 (br s, 1H), 3.82 (t, J = 6.6 Hz, 2H), 2.81 (t, J = 6.6 Hz, 2H), 1.51 (s, 9H), 1.49 (s, 1H); ¹³C NMR (101 358 MHz, CDCl₃) δ 152.83, 136.78, 133.07, 129.50, 118.93, 80.47, 63.70, 38.49, 28.34; HRMS: Calcd *m/z* for 359 360 $C_{13}H_{23}N_2O_3$ [M+NH₄]⁺ : 255.1703, Found: 255.1700.

361

tert-Butyl (4-(2-fluoroethyl)phenyl)carbamate (33). To a solution of *tert*-butyl (4-(2-hydroxyethyl)phenyl)carbamate (949 mg, 4 mmol) in CH₂Cl₂ (25 mL, plastic vessel) at -78°C under
nitrogen was added DAST (1.06 mL, 8 mmol) dropwise. After 30 min, the reaction mixture was left to

365 warm to 0°C and stirred at this temperature for 6 h. Unreacted DAST was carefully quenched by water 366 under vigorous stirring followed by addition of saturated K_2CO_3 aqueous solution. The phases were separated and the aqueous layer extracted three times with CH₂Cl₂. The combined organic layers were 367 368 washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified 369 by flash chromatography (10% EtOAc/CH₂Cl₂) to afford 824 mg of the title compound as a pale yellow crystalline solid (86%). R_f 0.90 (1:9 EtOAc/CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) δ 7.32 (br d, J = 8.2370 371 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 6.46 (br s, 1H), 4.60 (td, J = 6.6, 47.1 Hz, 2H), 2.98 (td, J = 6.6, 22.9 Hz, 2H), 1.54 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 152.77, 136.98, 131.67 (br d, J = 6.7 Hz, 1C), 372 129.48, 129.35, 118.79, 84.15 (br d, *J* = 169.0 Hz, 1C), 80.49, 38.54, 36.25 (br d, *J* = 20.4 Hz, 1C), 28.35; 373 HRMS: Calcd m/z for C₁₃H₁₈FNNa₂O₂ [M+Na]⁺ : 262.1214, Found: 262.1213. 374

375

376 4-(2-Fluoroethyl)aniline (34). To an ice cold solution of *tert*-Butyl (4-(2-fluoroethyl)phenyl)carbamate 377 (600 mg, 2.5 mmol) in CH₂Cl₂ (10 mL) was added TFA (1.15 mL, 15 mmol). The reaction mixture was 378 left to warm to room temperature and stirred for 5 h. The volatiles were removed in *vacuo* and the residue was dissolved in EtOAc and washed with aqueous saturated NaHCO₃. The organic layer was washed with 379 380 brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (30% EtOAc/hexanes) to afford 325 mg of the title compound as a pale 381 yellow oil (93%). Rf 0.31 (3:7 EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.05 - 7.00 (m, 2H), 6.67 -382 6.63 (m, 2H), 4.57 (td, J = 6.8, 47.2 Hz, 2H), 3.75 - 3.28 (m, 2H), 2.91 (td, J = 6.8, 22.2 Hz, 2H); ¹³C 383 NMR (101 MHz, CDCl₃) δ 145.03, 129.80, 126.80 (d, J = 7.3 Hz, 1C), 115.30, 84.50 (br d, J = 169.0 Hz, 384 1C), 36.08 (d, J = 20.1 Hz, 1C); HRMS: Calcd m/z for C₈H₁₁FN [M+H]⁺ : 140.0870, Found: 140.0871. 385

386

387 6-(2-(3-Fluorophenyl)pyrrolidin-1-yl)-*N*-(3-hydroxycyclobutyl)imidazo[1,2-*b*]pyridazine-3-

carboxamide (35). To a solution of 6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-

389 carboxylic acid (90 mg, 0.28 mmol) in DMF (4 mL) was added DIPEA (0.12 mL, 0.7 mmol) and HATU 390 (107 mg, 0.28 mmol). The reaction mixture was stirred at room temperature for 5 min and 3aminocyclobutanol hydrochloride (42 mg, 0.34 mmol) was added in one portion. The reaction mixture 391 392 was stirred overnight and then diluted with EtOAc and poured into water. The aqueous phase was 393 extracted three times with EtOAc and the combined organic phases were washed with brine, dried over 394 Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash 395 chromatography (5% MeOH/CH₂Cl₂) to afford 110 mg of the title compound as a beige solid (99%). 396 $R_f 0.15$ (5:95 MeOH/CH₂Cl₂). The NMR characterization was achieved on the inseparable diastereoisomeric mixture. Whenever distinguishable, chemical shifts given are for one isomer with those 397 of the second one listed in square brackets. ¹H NMR (500 MHz, CDCl₃) δ 8.84 (br s, 1H), 8.22 (d, J = 3.7398 Hz, 1H), 7.74 (br d, J = 9.9 Hz, 1H), 7.39 - 7.32 (m, 1H), 7.09 - 6.97 (m, 2H), 6.97 - 6.91 (m, 1H), 6.63 -399 400 6.49 (m, 1H), 5.10 (br d, J = 7.3 Hz, 1H), 4.71 - 4.52 (m, 1H), 4.21 - 4.12 (m, 1H), 3.98 - 3.90 (m, 1H), 3.79 - 3.72 (m, 1H), 3.20 (dq, J = 4.2, 7.5 Hz, 1H), [2.97 - 2.91 (m, 1H)], 2.61 - 2.53 (m, 1H), 2.52 - 2.42 401 (m, 1H), 2.42 - 2.28 (m, 1H), 2.28 - 2.04 (m, 3H), 2.00 - 1.91 (m, 1H), 1.85 (br d, J = 9.2 Hz, 1H); ¹³C 402 403 NMR (126 MHz, CDCl₃) δ 163.24 (br d, J = 247.5 Hz, 1C), [163.21 (br d, J = 247.5 Hz, 1C)], 158.93, 404 [158.70], 152.14, [152.07], 144.84, 137.79, 137.20 (br d, J = 7.3 Hz, 1C), 130.76 (d, J = 8.5 Hz, 1C), 405 [130.71 (d, J = 8.5 Hz, 1C)], 127.05, [127.01], 122.47 (br s, 1C), [122.36 (br s, 1C)], 121.21 (d, J = 2.8)Hz, 1C), [121.14 (d, J = 2.8 Hz, 1C)], 114.57 (br d, J=21.3 Hz, 1C), [114.59 (br dd, J = 3.4, 21.2 Hz, 1C)]406], 112.63 (br d, J = 22.3 Hz, 1C), [112.65 (br d, J = 21.8 Hz, 1C)], 110.69, [110.65], 65.28, 61.92, [61.42], 407 408 55.75, 48.59, [48.47], 41.78, [41.63], 40.50, [40.38], 35.88, [35.75], 22.77, [22.76]; HRMS: Calcd m/z for C₂₁H₂₂FN₅NaO₂ [M+Na]⁺ : 418.1650, Found: 418.1650. 409

410

3-(6-(2-(3-Fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxamido)cyclobutyl
methylbenzenesulfonate (36). To an ice cold solution of 6-(2-(3-Fluorophenyl)pyrrolidin-1-yl)-N-(3hydroxycyclobutyl)imidazo[1,2-b]pyridazine-3-carboxamide (156 mg, 0.40 mmol) in CH₂Cl₂ (15 mL)

414 was successively added Et₃N (84 µL, 0.60 mmol) and 4-toluenesulfonyl chloride (81 mg, 0.42 mmol). 415 The reaction was left to warm to room temperature and allowed to stir for 2 days. The reaction mixture was then diluted with CH₂Cl₂ and poured into water. The layers were separated and the aqueous phase 416 417 was extracted three times with CH_2Cl_2 . The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash 418 419 chromatography (5% MeOH/CH₂Cl₂) to afford 149 mg of the title compound as a tan solid (70 %). 420 $R_f 0.46$ (5:95 MeOH/CH₂Cl₂). The NMR characterization was achieved on the inseparable 421 diastereoisomeric mixture. Whenever distinguishable, chemical shifts given are for one isomer with those of the second one listed in square brackets. ¹H NMR (498 MHz, CDCl₃) δ 8.76 (br s, 1H), 8.14 (br s, 1H), 422 423 7.81 - 7.74 (m, 2H), 7.70 - 7.64 (m, 1H), 7.39 - 7.29 (m, 3H), 7.07 - 7.00 (m, 1H), 6.99 - 6.94 (m, 1H), 6.90 - 6.84 (m, 1H), 6.54 (br s, 1H), 5.09 - 5.04 (m, 1H), 4.56 - 4.49 (m, 1H), 4.23 - 4.15 (m, 1H), 3.87 (br 424 d, J = 8.6 Hz, 1H), 3.73 - 3.64 (m, 1H), [3.39 - 3.24 (m, 1H)], 2.87 - 2.79 (m, 1H), 2.74 (br s, 1H), [2.62 - 3.24]425 2.50 (m, 2H)], 2.44 (d, J = 4.7 Hz, 3H), 2.39 - 2.07 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 163.20 (br d, 426 427 J = 247.5 Hz, 1C), [163.23 (br d, J = 247.5 Hz, 1C), 144.78 (br d, J = 6.0 Hz, 1C), 144.66 (br d, J = 6.0428 Hz, 1C), 131.01 (d, J = 8.0 Hz, 1C), 130.76 (d, J = 8.0 Hz, 1C), 129.98, 129.93, 127.92, 127.77, 121.27 (br d, J = 2.5 Hz, 1C), 121.11 (d, J = 2.5 Hz, 1C), 114.64 (br d, J = 21.3 Hz, 1C), 114.60 (br d, J = 21.1429 Hz, 1C), 112.57 (br d, J = 22.1 Hz, 1C), 112.51 (br d, J = 22.1 Hz, 1C), 37.75, 35.89, 22.77, 21.69; 430 431 HRMS: Calcd m/z for C₂₈H₂₉FN₅O₄S [M+H]⁺ : 550.1919, Found: 550.1926.

432

4-(2-((*tert*-butyldiphenylsilyl)oxy)ethyl)aniline (38). A solution of TBDPSCI (1.32 g, 4.8 mmol) in
DMF (5 mL) was added to a mixture of 2-(4-aminophenyl)ethanol (660 mg, 4.8 mmol) and imidazole
(654 mg, 9.6 mmol) in DMF (20 mL) at room temperature. The reaction mixture was stirred overnight
and water was added. The mixture was extracted with EtOAc and the combined organic phases were
washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude
product was purified by flash chromatography (30% EtOAc/hexane) to afford 1.44 g of the title

compound as a yellow oil (80 %). R_f 0.48 (30% EtOAc/hexane). ¹H NMR (498 MHz, CDCl₃) δ = 7.68 (d, *J* = 7.0 Hz, 4H), 7.49 - 7.38 (m, 6H), 6.99 (d, *J* = 8.3 Hz, 2H), 6.64 (d, *J* = 7.8 Hz, 2H), 3.85 (t, *J* = 7.1
Hz, 2H), 3.57 (br s, 2H), 2.82 (t, *J* = 7.1 Hz, 2H), 1.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ = 144.56,
135.64, 134.00, 130.03, 129.54, 129.09, 127.62, 115.13, 65.62, 38.52, 26.92, 19.22; HRMS: Calcd *m/z* for
C₂₄H₃₀NOSi [M+H]⁺: 376.2091, Found: 376.2091.

444

445 *N*-(4-(2-((*tert*-butyldiphenylsilyl)oxy)ethyl)phenyl)-6-(2-(3-fluorophenyl)pyrrolidin-1-

yl)imidazo[1,2-b]pyridazine-3-carboxamide (39). To a solution of 6-(2-(3-fluorophenyl)pyrrolidin-1-446 447 yl)imidazo[1,2-b]pyridazine-3-carboxylic acid (38) (90 mg, 0.28 mmol) in DMF (3 mL) was added DIPEA (0.12 mL, 0.7 mmol) and HATU (107 mg, 0.28 mmol). The reaction mixture was stirred at room 448 449 temperature for 5 min and a solution of 38 (128 mg, 0.34 mmol) in DMF (1 mL) was added in one 450 portion. The reaction mixture was stirred overnight and then diluted with EtOAc and poured into water. 451 The aqueous phase was extracted three times with EtOAc and the combined organic phases were washed 452 with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (1% MeOH/CH₂Cl₂) to afford 191 mg of the title compound as a beige 453 454 solid (99%). $R_f 0.24$ (1:99 MeOH/CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) $\delta = 10.64 - 10.46$ (m, 1H), 8.31 (s, 1H), 7.71 (br d, J = 10.0 Hz, 1H), 7.66 - 7.57 (m, 4H), 7.25 - 7.23 (m, 1H), 7.53 - 7.13 (m, 11H), 7.04 -455 6.87 (m, 3H), 6.60 - 6.49 (m, 1H), 5.11 (br d, J = 7.6 Hz, 1H), 4.00 (br t, J = 7.0 Hz, 1H), 3.90 - 3.76 (m, 1H), 5.11 (br d, J = 7.6 Hz, 1H), 4.00 (br t, J = 7.0 Hz, 1H), 3.90 - 3.76 (m, 1H), 5.11 (br d, J = 7.6 Hz, 100 Hz, 100 (br d, J = 7.6 Hz, 100 Hz, 100 (br d, J = 7.6 Hz456 3H), 2.87 (t, J = 6.8 Hz, 2H), 2.63 - 2.51 (m, 1H), 2.25 - 2.05 (m, 3H), 1.07 (s, 9H); ¹³C NMR (125 MHz, 457 $CDCl_3$) $\delta = 163.24$ (d, J = 247.5 Hz, 1C), 157.06, 152.10, 144.84 (br s, 1C), 144.80 (br s, 1C), 136.09, 458 459 135.58, 135.51, 135.18, 133.81, 130.73, 129.80, 129.57, 127.63, 127.09, 122.62, 121.16, 120.29, 114.62 460 (br d, *J* = 21.2 Hz, 1C), 112.60 (br d, *J* = 22.2 Hz, 1C), 110.90, 65.17, 62.05, 48.65, 38.78, 35.88, 26.87, 22.75, 19.20; HRMS: Calcd *m*/*z* for C₄₁H₄₂FN₅NaO₂Si [M+Na]⁺ : 706.2984, Found: 706.2999. 461

464 carboxamide (40). To a solution of N-(4-(2-((*tert*-butyldiphenylsilyl)oxy)ethyl)phenyl)-6-(2-(3-465 fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxamide (180 mg, 0.26 mmol) in THF (8 466 mL) was added TBAF (1.0 M in THF, 0.39 mL, 0.39 mmol) and the reaction mixture was stirred at room 467 temperature for 2 h then diluted with water and extracted with EtOAc. The combined organic phases were 468 washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude 469 product was purified by flash chromatography (10% MeOH/CH₂Cl₂) to afford 103 mg of the title 470 compound as a beige solid (89%). $R_f 0.42$ (10:90 MeOH/CH₂Cl₂). ¹H NMR (498 MHz, CDCl₃) $\delta = 10.56$ (br s, 1H), 8.28 (s, 1H), 7.68 (br d, J = 9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J = 6.0, 7.8 Hz, 1H), 471 7.21 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 7.7 Hz, 1H), 6.99 (dt, J = 2.2, 8.4 Hz, 1H), 6.96 - 6.91 (m, 1H), 6.54 472 (br d, J = 9.4 Hz, 1H), 5.11 (br d, J = 7.8 Hz, 1H), 4.05 - 3.95 (m, 1H), 3.89 (t, J = 6.5 Hz, 2H), 3.84 -473 474 $3.75 \text{ (m, 1H)}, 2.87 \text{ (t, } J = 6.5 \text{ Hz}, 2\text{H}), 2.65 - 2.52 \text{ (m, 1H)}, 2.27 - 2.07 \text{ (m, 3H)}, 1.98 - 1.73 \text{ (m, 1H)}; {}^{13}\text{C}$ NMR (125 MHz, CDCl₃) δ = 163.25 (d, J = 247.5 Hz, 1C), 157.09, 152.10, 144.79, 137.97, 136.31, 475 476 134.55, 130.70 (d, J = 8.0 Hz, 1C), 129.59, 127.01, 122.49, 121.16, 121.14, 120.53, 114.63 (d, J = 20.6Hz, 1C), 112.65 (br d, J = 21.9 Hz, 1C), 110.96, 63.62, 62.11, 48.66, 38.72, 35.90, 22.76; HRMS: Calcd 477 478 m/z for C₂₅H₂₅FN₅O₂ [M+H]⁺: 446.1987, Found: 446.1994.

479

480 4-(6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-carboxamido)phenethyl 4-481 methylbenzenesulfonate (41). To an ice cold solution of 6-(2-(3-fluorophenyl)pyrrolidin-1-yl)-N-(4-(2hydroxyethyl)phenyl)imidazo[1,2-b]pyridazine-3-carboxamide (100 mg, 0.22 mmol) in CH₂Cl₂ (5 mL) 482 483 was successively added Et₃N (46 µL, 0.33 mmol) and 4-toluenesulfonyl chloride (50 mg, 0.26 mmol). The reaction was left to warm at room temperature and allowed to stir for 4 days. The reaction mixture 484 485 was then diluted with CH_2Cl_2 and poured into water. The layers were separated and the aqueous phase 486 was extracted three times with CH₂Cl₂. The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash 487

488 chromatography (5% MeOH/CH₂Cl₂) to afford 84 mg of the title compound as a tan solid (64 %). R_f 0.52 $(10:90 \text{ MeOH/CH}_2\text{Cl}_2)$. ¹H NMR (498 MHz, CDCl₃) $\delta = 10.59$ (br s, 1H), 8.32 (s, 1H), 7.77 - 7.70 (m, 489 490 3H), 7.53 - 7.41 (m, 2H), 7.36 - 7.29 (m, 3H), 7.13 (d, J = 8.3 Hz, 2H), 7.05 - 6.96 (m, 2H), 6.95 - 6.90491 (m, 1H), 6.61 - 6.54 (m, 1H), 5.16 - 5.09 (m, 1H), 4.23 (t, J = 7.0 Hz, 2H), 4.06 - 3.99 (m, 1H), 3.87 - 1003.79 (m, 1H), 2.97 (t, J = 6.9 Hz, 2H), 2.63 - 2.53 (m, 1H), 2.45 (s, 3H), 2.25 - 2.13 (m, 3H); ¹³C NMR 492 $(125 \text{ MHz}, \text{CDCl}_3) \delta = 163.23 \text{ (d, } J = 247.8 \text{ Hz}, 1\text{C}), 157.11, 156.02, 152.14, 144.78, 136.81, 132.91, 157.11, 156.02, 152.14, 144.78, 136.81, 132.91, 157.11, 156.02, 157.11, 156.11, 157.11, 156.11, 157.11, 156.11, 157.11, 156.11, 157.11, 156.11, 157.11, 156.11, 157.11, 156.11, 157.11, 156.11, 157.1$ 493 494 132.09, 130.73 (br d, J = 8.3 Hz, 1C), 129.83, 129.52, 127.82, 127.14, 122.48, 121.16 (br d, J = 2.8 Hz, 495 1C), 120.57 (br s, 1C), 120.54, 114.64 (br d, J = 20.9 Hz, 1C), 112.60 (d, J = 22.2 Hz, 1C), 110.98, 70.64, 496 62.11, 48.69, 35.89, 34.84, 22.78, 21.64; HRMS: Calcd m/z for $C_{32}H_{30}FN_5NaO_4S$ [M+Na]⁺: 622.1895, Found: 622.1903. 497

499 **3. DOCKING STUDIES**¹

Molecular docking simulations of compounds **9-27** were performed using the X-ray co-crystal structure of TrkA- N^4 -(4-morpholinophenyl)- N^6 -(pyridin-3-ylmethyl)pyrido[3,2-*d*]pyrimidine-4,6-diamine complex (PDB 4PMT), TrkA-N-(3-cyclopropyl-1-phenyl-1*H*-pyrazol-5-yl)-2-{4-[3-methoxy-4-(4-methyl-1*H*-imidazol-1-yl)phenyl]-1*H*-1,2,3-triazol-1-yl}acetamide complex (PDB 4PMM), TrkB-cpd5n complex (PDB 4AT3), TrkB-EX429 complex (PDB 4AT4) and TrkC-GNF-5837 (PDB 3V5Q) using FITTED 3.5 program (FORECASTER platform).¹ Docking structures and figures were prepared using PyMOL.

507

509 Figures S1. Comparison of the predicted binding poses for (R)-16 bound to TrkA/B/C in DFG-in (A-C) and DFG-out (D-F) conformations. (A) Docking of (R)-16 (trans-substituted cyclobutyl: 510 cyan; cis-substituted cyclobutyl: purple) to the ATP binding site of TrkA (PDB 4PMT). The 511 DFG motif highlighted in brown. (B) Surface model of cis-(R)-16 docked to TrkA (*trans-(R)*-16 512 513 omitted for simplicity). (C) Superposition of TrkB (dark gray, DFG-in, PDB 4AT3) and the docking of *trans-(R)-16* with TrkA. The TrkA (cyan) and TrkB (blue) glycine-rich loops are 514 highlighted. (D) Docking of cis(R)-16 (purple) and trans(R)-16 (cyan) to the ATP binding site 515 of TrkB (PDB 4AT4). (E) Surface model of trans-(R)-16 docked to TrkB (cis-(R)-16 omitted for 516 simplicity). (C) Superposition of TrkA (pale gray, PDB 4PMM), TrkC (blue, PDB 3V5Q) and 517 the docking of *trans-(R)*-16 with TrkB. 518

Figures S2. (A) Docking of *trans-(S)-16* to the ATP binding site of TrkB (PDB 4AT3). (B) Surface model of *trans-(S)-16* docked to TrkB. (C) Superposition of TrkA (blue, PDB 4PMT) and TrkB (pale gray, PDB 4AT3) and the docking of *trans-(S)-16* (cyan) and *trans-(R)-16* (light pink) to TrkB. (D) The key Pi-interaction between the 3-fluorophenyl moiety positioned in the ribose binding pocket and the Phe565 form the glycine-rich loop is conserved due to the rotation of the $C_6 - N$ -pyrrolidine bond and concomitant rearrangement of the pyrrolidine ring.

533 4. RADIOCHEMISTRY

Radiochemistry. The manual radiosyntheses of $[^{18}F]$ -(±)-**IPMICF6** ($[^{18}F]$ **16**) and $[^{18}F]$ -(±)-534 **IPMICF10** ([¹⁸F]27) were performed and optimized in the radiochemistry laboratory of the 535 Edmonton PET Center Site (ACSI 19/9 MeV cyclotron). For in vitro autoradiography 536 experiments, the radiotracers $[^{18}F]$ -(±)-**IPMICF6** and $[^{18}F]$ -(±)-**IPMICF10** were produced at the 537 cyclotron laboratory (IBA Cyclon 18/9 MeV cyclotron) of the McConnell Brain Imaging Center 538 Site (Montreal Neurological Institute, McGill University) using radiosynthesis module 539 Scintomics GRP (Germany). No-carrier-added (n.c.a) aqueous $[^{18}F]$ Fluoride was produced by a 540 $^{18}O(p,n)^{18}F$ nuclear reaction on an enriched [^{18}O]water target. 541

542 4.1 Edmonton PET Center Site.

HPLC Methods. Semi preparative, radio-preparative high performance liquid chromatography 543 (HPLC) purifications and quality control analyses were performed using a Phenomenex LUNA® 544 C18 column (100 Å, 250×10 mm, 10 µm) using a Gilson 322 Pump module fitted with a 171 545 Diode Array and a radio detector. Method A: elution at 3.0 ml min⁻¹ with a mixture of H₂O (A) 546 and MeCN (B) isocratic at 40% A and 60% B (t_r [18F]-(±)-IPMICF6(16) = 10.81 min). Method B: 547 elution at 3.0 ml min⁻¹ with a mixture of H₂O (A) and MeCN (B) isocratic at 43% A and 57% B 548 $(t_{r [18F]-(\pm)-IPMICF6(16)} = 12.40 \text{ min})$. Method C: elution at 3.0 ml min⁻¹ with a mixture of H₂O (A) 549 and MeCN (B) isocratic at 32% A and 68% B (t_r [18F]-(±)-IPMICF10(27) = 13.20 min). 550

Radiosynthesis of $[{}^{18}F]$ - (\pm) -*IPMICF6*. No-carrier-added (n.c.a) aqueous $[{}^{18}F]$ fluoride was passed through a Sep-Pak Light QMA cartridge (Waters) (typically 1-2 GBq in 2.0 mL water). The cartridge was dried by airflow, and the ${}^{18}F$ activity was eluted with 1.0 mL of a Kryptofix 2.2.2/K₂CO₃ solution (from a 10.0 mL stock solution of 22.6 mg of Kryptofix 222 and 4.2 mg of

K₂CO₃ in acetonitrile/water (95/5)) to a 10.0 mL conical vial. The solvent was removed at 100°C 555 under atmospheric pressure and a stream of nitrogen gas. The residue was azeotropically dried 556 with a total of 6.0 mL of anhydrous acetonitrile at 100°C to afford the dried K2.2.2/K[¹⁸F]F 557 complex residue which was dissolved in a solution of the tosylate precursor 36 (2.5 mg) in DMF 558 (300 µL) and heated at 120°C for 10 min. The reaction mixture was cooled to room temperature 559 and diluted with 600 µL of a mixture of MeCN/H₂O (1:1) and purified by semi-preparative 560 HPLC (HPLC Method A or B). The eluates were monitored for radioactivity and for UV 561 absorbance (254 nm) and the peak corresponding to $[^{18}F]$ -(±)-IPMICF6 was collected and 562 diluted with 15 mL of water followed by trapping on a preconditioned (10 mL EtOH followed by 563 10 mL water) Sep-Pak C18 Ligth. The cartridge was eluted with 0.6 mL EtOH. The identity of 564 $[^{18}F]$ -(±)-**IPMICF6** was further confirmed by co-injection with nonradioactive **16**. The tracer 565 was obtained in 24.8 \pm 2.6 % RCY (n = 3, non-decay corrected isolated yield from injected 566 activity) and >99% radiochemical purities. (< 50 min procedure from end of bombardment). 567

Radiosynthesis of $\int_{-1}^{18} F_{-}^{1}(\pm) - IPMICF10$. The K2.2.2/K $\int_{-1}^{18} F_{-}^{18} F_{-}^{18}$ complex residue from the drying 568 step (1-2 GBq) was dissolve in a solution of the tosylate precursor 41 (2.5 mg) in MeCN (250 569 µL) and heated at 100°C for 20 min. The reaction mixture was cooled to room temperature and 570 diluted with a 600 μ L of a mixture of MeCN/H₂O (1:1) and purified by semi-preparative HPLC 571 (HPLC Method C). The eluates were monitored for radioactivity and for UV absorbance (254 572 nm) and the peak corresponding to $[^{18}F]$ -(±)-**IPMICF10** was collected and diluted with 15 mL of 573 water followed by trapping on a preconditioned (10 mL EtOH followed by 10 mL water) Sep-574 Pak C18 Light. The cartridge was eluted with 0.6 mL EtOH. The identity of $[^{18}F]$ -(±)-575 **IPMICF10** was further confirmed by co-injection with nonradioactive 27. The tracer was 576

obtained in 18.4 ± 3.7 % RCY (n = 3, non-decay corrected isolated yield from injected activity) and >99% radiochemical purities. (< 60 min procedure from end of bombardment).

579 **4.2 McConnell Brain Imaging Center Site.**

HPLC Methods. Semi preparative, radio-preparative high performance liquid chromatography 580 (HPLC) purifications were performed using a Phenomenex LUNA \otimes C18 column (100 Å, 250 × 581 10 mm, 10 µm). Method D: elution at 3.0 ml min⁻¹ with a mixture of H₂O (A) and MeCN (B) 582 isocratic at 43% A and 57% B (t_r [18F]-(±)-IPMICF6(16) = 12.60 min). Method E: elution at 3.0 ml min⁻ 583 ¹ with a mixture of H₂O (A) and MeCN (B) isocratic at 32% A and 68% B (t_r [18F]-(±)-IPMICF10(27) = 584 14.30 min). Quality control analysis was performed on an Agilent 1200 system (Agilent 585 Technologies, Santa Clara, CA, USA; running on Agilent ChemStation software) equipped with 586 a Raytest Gabi Star radioactivity detector (Raytest Isotopenmessgeräte GmbH, Straubenhardt, 587 Germany) using a Phenomenex Partisil ODS-3 ($250 \times 4.6 \text{ mm}, 5 \mu \text{m}$) column. Method F: elution 588 at 1.0 ml min⁻¹ with a mixture of H₂O (A) and MeCN (B) isocratic at 30% A and 70% B (t_r [18F]. 589 (±)-IPMICF6(16) = 7.39 min; t_r [18F]-(±)-IPMICF10(27) = 9.73 min). 590

Radiosynthesis of $[{}^{18}F]$ -(±)-*IPMICF6*. The azeotropic drying of ${}^{18}F$ - and the radiosyntheses were 591 carried out using a radiosynthesis module Scintomics GRP (Germany) with a home-made 592 manifold setup operated with Scintomics software. The module was equipped with a 593 radioactivity detector and a Knauer UV detector. The $[^{18}F]F/H_2O$ (32.2 GBg – 870 mCi) was 594 passed through a Sep-Pak Light QMA cartridge (Waters) as an aqueous solution in ¹⁸O-enriched 595 water and the ¹⁸F activity was eluted with 1.5 mL of a Kryptofix2.2.2./K₂CO₃ solution 596 (Kryptofix2.2.2. - 10-12 mg, dissolved in 150 μ L of 0.125M K₂CO₃ + 1.3 mL MeCN) to a 597 disposable plastic reactor. The solvent was removed at 100°C under reduced pressure and a 598

599 stream of argon gas. The residue was azeotropically dried with 0.5 mL of anhydrous acetonitrile twice at 100°C. Following azeotropic drying, the reaction vial was charged with tosylate 600 precursor 36 (2.5 mg, in 0.5 mL DMF) and the mixture was allowed to react for 10 min at 601 602 120°C. The crude mixture was then diluted with HPLC eluent (1.5 mL, 57% MeCN, 43% H₂O) and injected on HPLC. The pure [18F]-(±)-IPMICF6 was obtained in 7.9 % RCY (EOS, non-603 decay corrected isolated yield from 18 F/H₂O; HPLC method D), > 99% radiochemical purity and 604 specific activity of 163 GBq/umol (4414 Ci/mmol). An aliquot of the product fraction 605 corresponding to [¹⁸F]-(±)-IPMICF6 was collected and diluted with 15 mL H₂O and passed 606 through a preconditioned (10 mL EtOH followed by 10 mL water) Sep-Pak C18 Plus Cartridge 607 and then eluted with 0.5 mL EtOH and used directly in the autoradiography experiments. Quality 608 control, of the isolated $[^{18}F]$ -(±)-**IPMICF6** was performed using HPLC method F. 609

610 *Radiosynthesis of* $[{}^{18}F]$ -(\pm)-*IPMICF10*. The radiotracer was synthesized in a similar procedure 611 using the precursor **41** (2.5 mg, in 0.5 mL MeCN). The reaction was carried out for 20 min at 612 95°C and led to the isolation of $[{}^{18}F]$ -(\pm)-*IPMICF10* in 3.4 % RCY (EOS, non-decay corrected 613 isolated yield from ${}^{18}F$ -/H₂O; HPLC method D), > 98.5% radiochemical purity and specific 614 activity of 242 GBq/µmol (6549 Ci/mmol). Quality control, of the isolated $[{}^{18}F]$ -(\pm)-*IPMICF10* 615 was performed using HPLC method F.

616

617 **4.3 Plasma Stability.**

618 Compound [¹⁸F]-(\pm)-**IPMICF6** and [¹⁸F]-(\pm)-**IPMICF10** (radiochemical purity > 99%) were 619 incubated in human plasma (500 µL) at 37°C and ice-cold acetonitrile (250 µL, after 60 min) was 620 added for protein precipitation at different time points followed by centrifugation. The amount of 621 intact $[^{18}F]$ -(±)-IPMICF6 and $[^{18}F]$ -(±)-IPMICF10 was determined by HPLC analysis of the

622 supernatant.

623

624

Figures S3. Typical semi-preparative HPLC chromatogram of the radiofluorination of the tolylate precursor **36** leading to the formation of $[^{18}F]$ -(±)-**IPMICF6** (HPLC Method A). (In this instance, the UV peak at t =10.5 min in this chromatogram is expected to be an elimination products from the tosylate precursor which was observed when the reaction mixture was injected on HPLC >15 min after quenching. It illustrates the fact that the precursor readily degrades after quenching and that isolation as to be performed immediately after the reaction mixture is diluted with HPLC eluent.)

632

633

Figures S4. Representative HPLC-QC chromatogram of the collected $[^{18}F]$ -(±)-**IPMICF6** co-injected with the non-radioactive standard **16** (HPLC Method A).

639 Figures S5. HPLC analysis of human plasma at 60 min after [¹⁸F]-(±)-IPMICF6 incubation at 37°C

Figures S6. Typical semi-preparative HPLC chromatogram of the radiofluorination of the tolylate precursor **41** leading to the formation of $[^{18}F]$ -(±)-**IPMICF10** (HPLC Method C).

Figures S7. Representative HPLC-QC chromatogram of the collected $[^{18}F]$ -(±)-**IPMICF10** co-injected with the non-radioactive standard **27** (HPLC Method C).

Figures S8. HPLC analysis of human plasma at 60 min after [¹⁸F]-(±)-IPMICF10 incubation at 37°C
 (HPLC Method C).

655 4.2 McConnell Brain Imaging Center Site

Figures S10. HPLC-QC chromatogram of the collected/formulated $[^{18}F]$ -(±)-**IPMICF10** (HPLC Method F).

663 5. BIOLOGICAL EVALUATION

664 5.1 [γ-33P]ATP-Based Enzymatic Assay.

Compounds 9-27 were tested in a $[\gamma^{-33}P]ATP$ based enzymatic assay by Reaction Biology 665 Corporation (Malvern, PA). Briefly, the compound was tested in a 10-concentration IC₅₀ curve 666 with 3-fold serial dilution starting at 1 or 10 μ M (when required, additional dilutions were made). 667 The reactions were initially performed with 1 μ M ATP and profiled against 3 tyrosine kinases 668 (tropomyosin receptor kinase A (TrkA), tropomyosin receptor kinase B (TrkB), tropomyosin 669 670 receptor kinase C (TrkC)) in singlicate with staurosporine as a control. Additional measurements were carried out for selected compounds (triplicates for inhibitors 13-16 and 25-27). Compounds 671 16 and 27 were subsequently investigated for off-Trk kinase activity (Reaction Biology 672 Corporation). Compounds 16 and 27 were tested for inhibitory activity at (0.1 µM) on a panel of 673 20 selected kinases (SYK, RET, PDK1/PDHK1, PDGFRa, P38a/MAPK14, KDR/VEGFR2, 674 JNK1, JAK1, ITK, FMS, FLT3, ERK1, ERBB2/HER2, EGFR, c-SRC, c-MET, c-KIT, BRAF, 675 ALK, ABL1) under similar conditions as previously described (n = 2) (Table S1, S2). 676

677

678 **5.2 Dose Response Curves for Compounds 9-27**

Figures S11. Dose-response curve for inhibitor **9** (left; n = 1) and **10** (right; n = 1) versus TrkA, TrkB and TrkC.

Figures S12. Dose-response curve for inhibitor **11** (left; n = 1) and **12** (right; n = 1) versus TrkA, TrkB and TrkC.

686

687

683

Figures S13. Dose-response curve for inhibitor **13** (left; n = 3) and **14** (right; n = 3) versus TrkA, TrkB and TrkC (error bars represent standard deviation from the mean).

Figures S14. Dose-response curve for inhibitor **15** (left; n = 3) and **16** (right; n = 3) versus TrkA, TrkB and TrkC (error bars represent standard deviation from the mean).

Figures S15. Dose-response curve for inhibitor **17** (left; n = 1) and **18** (right; n = 1) versus TrkA, TrkB and TrkC.

698

Figures S16. Dose-response curve for inhibitor **19** (left; n = 1) and **20** (right; n = 1) versus TrkA, TrkB and TrkC.

Figures S17. Dose-response curve for inhibitor **21** (left; n = 1) and **22** (right; n = 1) versus TrkA, TrkB and TrkC.

Figures S18. Dose-response curve for inhibitor **23** (left; n = 1) and **24** (right; n = 1) versus TrkA, TrkB and TrkC.

711

Figures S19. Dose-response curve for inhibitor **25** (left; n = 3) and **26** (right; n = 3) versus TrkA, TrkB and TrkC (error bars represent standard deviation from the mean).

714

718

Figures S20. Dose-response curve for inhibitor **27** (left; n = 3) and staurosporine (control, right; n = 1) versus TrkA, TrkB and TrkC (error bars represent standard deviation from the mean).

Figures S21. Inhibition of TrkB kinase versus TrkB selectivity with regard to TrkA. The potencies are expressed as $-\log_{10}(IC_{50})$. Inhibitor **16** and **27** were selected based on TrkB potency, selectivity and radiolabeling amenability.

723
5.3 Selectivity Profiling.

Table S1. Data for off-Trk inhibitory activity of compound **16** (0.1 μ M)

	0/ E	. . • • .			
	% Enzym	e Activity			
	(relative to DMSO				
	conti	rois)			
	IPMI	CF6		IC50 (M)	
			IC50 (M)	Alternate	Alternate compound
Vinces	Data 1	Data 2	Staurosporme"	control	ID
Kinases		Data 2	1.055.00	cpu".	
ABLI	95.96	95.31	1.85E-08		730
ALK	94.54	92.85	8.60E-10		730
BRAF	101.34	99.25	ND	2.37E-08	GW5074
c-Kit	105.16	104.36	4.46E-08		
c-MET	95.81	93.81	4.36E-08		
c-Src	97.38	96.64	2.34E-09		
EGFR	68.08	65.22	3.12E-08		
ERBB2/HER2	49.99	49.22	1.97E-08		
ERK1	103.46	103.35	3.93E-06		
FLT3	85.14	84.99	1.08E-09		
FMS	103.17	101.89	6.24E-10		
ITK	93.59	93.22	7.75E-09		
JAK1	90.97	90.37	2.96E-10		
JNK1	99.49	99.38	1.67E-07		
KDR/VEGFR2	110.38	109.61	4.00E-09		
P38a/MAPK14	99.59	97.36	ND	2.09E-08	SB202190
PDGFRa	100.61	99.00	2.07E-10		
PDK1/PDHK1	85.56	85.37	ND	1.88E-05	GW5074
RET	90.98	89.43	9.79E-10		
SYK	105.23	104.84	7.74E-10		

% Enzyme Activity (relative to DMSO controls)		Compound IC50* (M):			
	IPMI	CF10	Staurosporino	Alternate	Alternate
Kinase:	Data 1	Data 2	Staurosporme	Control cpd.	compound ID
ABL1	91.79	90.89	3.51E-08		
ALK	89.40	88.60	8.92E-10		
BRAF	95.46	92.68		2.98E-08	GW5074
c-Kit	101.20	100.52	5.74E-08		
c-MET	98.31	95.79	2.60E-08		
c-Src	103.39	102.83	1.61E-09		
EGFR	96.51	89.72	2.08E-08		
ERBB2/HER2	79.72	79.54	1.64E-08		
ERK1	101.56	100.99	1.21E-06		
FLT3	96.07	94.11	9.65E-10		
FMS	107.46	102.33	9.87E-11		
ITK	98.19	97.06	4.16E-09		
JAK1	100.70	98.68	1.32E-10		
JNK1	100.68	99.80	1.41E-07		
KDR/VEGFR2	95.60	94.49	1.26E-09		
P38a/MAPK14	99.59	99.49		2.09E-08	SB202190
PDGFRa	99.55	99.48	7.30E-12		
PDK1/PDHK1	79.08	78.71		1.37E-04	GW5074
RET	105.91	105.83	1.44E-09		
SYK	104.34	103.51	7.96E-10		

A rat was decapitated, the brains rapidly removed, frozen in 2-methylbutane (-40°C), and stored 736 at -80° C. Brain sections (20 μ m thick) were thawed and mounted onto Superfrost Plus slides 737 (Thermo Scientific) and stored at -80°C. After pre-incubation in PBS buffer (30 mmol/L; pH 7.4 738 739 containing 137 mmol/L NaCl, 27 mmol/L) for 10 minutes at room temperature, rat and tumor sections were incubated 2 h 30 (room temperature) in buffer containing $[^{18}F]$ -(±)-**IPMICF6** (67 740 μ Ci in 200 mL buffer total) and 2 h 30 (room temperature) for [¹⁸F]-(±)-**IPMICF10** (279 μ Ci in 741 200 mL buffer total). Compound 16 (IPMICF6; 1.0 µM) and GNF-5839 (10 µM) were used to 742 determine the specific binding of $[^{18}F]$ -(±)-**IPMICF6** and $[^{18}F]$ -(±)-**IPMICF10** respectively. 743 After three washes in incubation buffer (5 minutes, 4°C) and a rapid rinse with ice-cold water 744 (15 seconds), the sections were dried in a stream of air (room temperature). Sections were then 745 dried further in a vacuum container with formaldehyde powder for mild fixation. Labeled 746 sections were placed on phosphor-imaging plates (BAS 2025; Fuji, Japan), with industrial tritium 747 activity standards (Amersham Biosciences, Piscataway, NJ, USA). On exposure, the plates were 748 scanned with a plate reader (spatial resolution of $50 \,\mu$ m; BAS 5000; Fuji or Typhoon Trio + 749 750 Variable Mode Imager).

Figures S22. (A) Representative in vitro autoradiograms from coronal sections of rat brain showing the binding of $[^{18}F]$ **27** (A, right) and competition experiments with **GNF-5837** (10 μ M) (A, left). (B) Structure of GNF-5837

MEAN
1,171 11 11

The area of brain		CRTL	%CHANGE
Rat	NORMAL	NS- SPECIFIC	IN RAT
		IPMICF6	IPMICF6
		1.0 µM	
Prefrontal cortex	2611,793	1913,229	26,75
Posterior cortex	2702,114	1950,547	27,81
Hippocampus	2586,560	1904,214	26,38
Cerebellum	2457,055	1860,967	24,26

758	Table S4. PSL Da	ta for ¹⁸ F-IPMIC10	Autoradiography
-----	------------------	--------------------------------	-----------------

¹⁸F-IPMICF10 MEAN

The area of brain		CRTL	%CHANGE
Rat	NORMAL	NS- SPECIFIC	IN RAT
	RAT	GNF-5837	GNF-5837
		10 µM	
Anterior cortex	54801,107	39985,001	27,04
Posterior cortex	55746,791	40286,937	27,73
Hippocampus	54356,573	39561,146	27,22
Cerebellum	57319,550	41240,174	28,05

760 6. NMR SPECTRUM

761 6.1 ¹H NMR and ¹³C NMR for compound **10**

Multiplets Integrals Sun	19.91 Number of	Nuclei 19 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.15X 498.118 M	MHz H1 1D in cdcl3 (ref. to	CDCI3 @ 7.26 ppm), t	emp 26.4 C -> actual temp	= 27.0 C, autoxdb probe
Date	Jan 7 2015	Date Stamp	Jan 7 2015	File Name	G:\2015.01\2015.01.0	7.i5_IPV_1.15X_H1_1D.fic	i\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42
Temperature (degree C)	26.400						

IPV 1.15X 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, CHLOROFORM-d) δ = 8.10 (s, 1H), 7.60 - 7.55 (m, *J*=9.9 Hz, 1H), 7.29 - 7.22 (m, 1H), 7.01 (d, *J*=7.5 Hz, 1H), 6.95 - 6.88 (m, 2H), 6.49 - 6.43 (m, *J*=9.9 Hz, 1H), 5.01 - 4.94 (m, 1H), 4.38 (q, *J*=7.1 Hz, 2H), 3.96 (s, 1H), 3.80 (s, 1H), 2.51 - 2.42 (m, 1H), 2.08 - 1.96 (m, 3H), 1.38 (t, *J*=7.1 Hz, 3H)

IPV 1.15X 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 19 C's

Acquisition Time (sec)	1.9958							
Comment	>V 1.15X 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of olvent signal							
Date	Jan 7 2015	Date Stamp	Jan 7 2015					
File Name	C:\Users\admin\Documents\	NMR jan2015\2015.01\2015	5.01.07.i5_IPV_1.15X_C13_A	PT_ad.fid\fid				
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	104			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3			
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C)	26.400							

¹³C NMR (125MHz, cdcl₃) δ = 163.11 (d, *J*=247.0 Hz, 1C), 159.24, 152.87, 146.01 (d, *J*=6.5 Hz, 1C), 139.35, 138.86, 130.37 (br d, *J*=8.0 Hz, 1C), 125.75, 121.32 (d, *J*=2.6 Hz, 1C), 119.54, 114.19 (br d, *J*=21.2 Hz, 1C), 112.76 (br d, *J*=22.2 Hz, 1C), 111.82, 61.91, 60.25, 48.58, 35.97, 22.84, 14.43

764 6.2 ¹H NMR and ¹³C NMR for compound 9

Multiplets Integrals Sum	14.38 Number of N	luclei 14 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.16 498.120 MHz	H1 1D in dmso (ref. to DM	ISO @ 2.49 ppm), temp	26.4 C -> actual temp = 27	0 C, autoxdb probe
Date	Jan 16 2015	Date Stamp	Jan 16 2015				
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.01	2015.01.16.i5_IPV_1.1	6_H1_1D.fid\fid		Frequency (MHz)	498.1202
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	dmso
Spectrum Offset (Hz)	2388.2527	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

IPV 1.16 498.120 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, dmso) δ = 7.98 (s, 1H), 7.86 (d, *J*=9.9 Hz, 1H), 7.37 - 7.27 (m, 1H), 7.16 - 7.06 (m, 2H), 7.06 - 6.97 (m, 1H), 7.02 (br t, *J*=8.4 Hz, 1H), 5.14 (dd, *J*=2.8, 8.1 Hz, 1H), 3.93 - 3.85 (m, 1H), 3.63 (br d, *J*=10.4 Hz, 1H), 2.47 - 2.35 (m, 1H), 2.03 - 1.93 (m, 2H), 1.93 - 1.83 (m, 1H)

765

IPV 1.16 125.266 MHz C13[H1] APT_ad in dmso (ref. to DMSO @ 39.5 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 17 C's

Acquisition Time (sec)	1.9958							
Comment	PV 1.16 125.266 MHz C13[H1] APT_ad in dmso (ref. to DMSO @ 39.5 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal							
Date	Jan 16 2015	Date Stamp	Jan 16 2015	File Name	F:\Schirrma\2015.01\2015.01.16.i5_IPV_1.16_C13_APT_ad.fid\fid			
Frequency (MHz)	125.2662	Nucleus	13C	Number of Transients	512			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	DMSO-d6			
Spectrum Offset (Hz)	14370.3350	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C	26.400							

 $^{13}C \text{ NMR } (125 \text{ MHz}, \text{ DMSO-}d_6) \delta = 162.75 \text{ (d}, \textit{J}=243.6 \text{ Hz}, 1C), 159.70, 152.73, 147.11 \text{ (d}, \textit{J}=6.5 \text{ Hz}, 1C), 138.98, 138.43, 130.89 \text{ (br } d, \textit{J}=8.5 \text{ Hz}, 1C), 126.50, 122.35 \text{ (br } d, \textit{J}=2.1 \text{ Hz}, 1C), 119.67, 114.15 \text{ (d}, \textit{J}=20.9 \text{ Hz}, 1C), 113.36 \text{ (br } d, \textit{J}=21.9 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 48.74, 35.63, 23.05 \text{ (br } d, \textit{J}=2.19 \text{ Hz}, 1C), 113.06, 61.46, 61.46, 61.74, 61$

767 6.3 ¹H NMR and ¹³C NMR for compound **11**

IPV 1.45 498.120 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

Multiplets integrals Sum 16.00 Number of Nuclei 16 H's							
Acquisition Time (sec)	4.9997	Comment	IPV 1.45 498.120 M	Hz H1 1D in dmso (ref. to [OMSO @ 2.49 ppm), te	mp 26.4 C -> actual temp =	27.0 C, autoxdb probe
Date	Feb 17 2015	Date Stamp	Feb 17 2015	File Name	F:\Schirrma\2015.02\	2015.02.17.i5_IPV_1.45_H	1_1D.fid\fid
Frequency (MHz)	498.1202	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	DMSO-d6	Spectrum Offset (Hz)	2388.2983	Spectrum Type	standard	Sweep Width (Hz)	6000.51
Temperature (degree C	26.400						

¹H NMR (498MHz, DMSO-d_a) δ = 8.04 - 7.87 (m, 2H), 7.87 - 7.72 (m, 1H), 7.71 - 7.58 (m, 1H), 7.39 - 7.29 (m, 1H), 7.14 - 6.96 (m, 3H), 6.84 (br s, 1H), 5.17 - 5.05 (m, 1H), 3.93 (br s, 1H), 3.61 (br d, *J*=9.6 Hz, 1H), 2.47 - 2.40 (m, 1H), 2.04 - 1.90 (m, 2H), 1.81 (br s, 1H)

768

769

Jamie_Bailey, IPV1_45x 125.691 MHz C13[H1] APT_ad in dmso (ref. to DMSO @ 39.5 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 17 C's

Acquisition Time (sec)	2.0000				
Comment	Jamie_Bailey, IPV1_45x 125 opposite side of solvent signa	5.691 MHz C13[H1] APT_a I	d in dmso (ref. to DMSO @ 39	9.5 ppm), temp 27.7 C -> ac	tual temp = 27.0 C, colddual probe C & CH2 same, CH & CH3
Date	Apr 28 2015	Date Stamp	Apr 28 2015		
File Name	F:\Schirrma\2015.04\2015.04	.28.u5_IPV1_45x_loc8_13	.47_C13_APT_ad.fid\fid	Frequency (MHz)	125.6908
Nucleus	13C	Number of Transients	308	Original Points Count	67568
Points Count	131072	Pulse Sequence	APT_ad	Receiver Gain	30.00
SW(cyclical) (Hz)	33783.79	Solvent	DMSO-d6	Spectrum Offset (Hz)	14348.9590
Spectrum Type	APT	Sweep Width (Hz)	33783.53	Temperature (degree C)	27.600

 $^{13}C \text{ NMR (126MHz, DMSO-d_6) } \delta = 162.41 \text{ (d, } J = 244.1 \text{ Hz, 1C), } 159.44, 151.75, 146.33 \text{ (d, } J = 6.4 \text{ Hz, 1C), } 137.43, 135.99, 130.64 \text{ (br d, } J = 8.2 \text{ Hz, 1C), } 126.65, 122.07, 121.58 \text{ (br d, } J = 2.1 \text{ Hz, 1C), } 113.74 \text{ (br d, } J = 20.9 \text{ Hz, 1C), } 112.18 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 111.84, 61.23, 48.28, 35.24, 22.50 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 112.18 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 111.84, 61.23, 48.28, 35.24, 22.50 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 112.18 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 111.84, 61.23, 48.28, 35.24, 22.50 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 112.18 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 112.18 \text{ (br d, } J = 21.4 \text{ Hz, 1C), } 112.8 \text{ (br d, }$

6.4 ¹H NMR and ¹³C NMR for compound **12** 770

Nultiplets Integrals Sum 18.13 Number of Nuclei 18 H's								
Acquisition Time (sec)	4.9997	Comment	IPV 1.44 498.120 Mi	Hz H1 1D in dmso (ref. to D	MSO @ 2.49 ppm), te	mp 26.4 C -> actual temp =	27.0 C, autoxdb probe	
Date	Feb 17 2015	Date Stamp	Feb 17 2015	File Name	F:\Schirrma\2015.02\2	2015.02.17.i5_IPV_1.44_H	1_1D.fid\fid	
Frequency (MHz)	498.1202	Nucleus	1H	Number of Transients	16	Original Points Count	30001	
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	
Solvent	DMSO-d6	Spectrum Offset (Hz)	2388.2983	Spectrum Type	standard	Sweep Width (Hz)	6000.51	

IPV 1.44 498.120 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

Temperature (degree C) 26.400

¹H NMR (498MHz, DMSO-d_x) δ = 8.18 - 7.98 (m, 1H), 7.95 (br d, *J*=9.9 Hz, 1H), 7.87 (s, 1H), 7.37 (dt, *J*=6.1, 8.0 Hz, 1H), 7.17 - 7.09 (m, 2H), 7.07 - 7.01 (m, 1H), 7.01 - 6.86 (m, 1H), 5.16 (dd, J=2.7, 8.3 Hz, 1H), 4.00 - 3.93 (m, 1H), 3.68 - 3.60 (m, 1H), 2.82 - 2.61 (m, 3H), 2.47 - 2.39 (m, 1H), 3.68 - 3.60 (m, 1H), 2.82 - 2.61 (m, 3H), 2.47 - 2.39 (m, 1H), 3.68 - 3.60 (m, 1H), 3.68 - 3.60 (m, 2H), 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 3.68 - 1H), 2.06 - 1.94 (m, 2H), 1.89 - 1.79 (m, 1H)

771

772

IPV 1.44 125.266 MHz C13[H1] APT_ad in dmso (ref. to DMSO @ 39.5 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 17 C's

Acquisition Time (sec)	1.9958							
Comment	IPV 1.44 125.266 MHz C13[H1] APT_ad in dmso (ref. to DMSO @ 39.5 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal							
Date	Feb 17 2015	Date Stamp	Feb 17 2015	File Name	F:\Schirrma\2015.02\2015.02.17.i5_IPV_1.44_C13_APT_ad.fid\fid			
Frequency (MHz)	125.2662	Nucleus	13C	Number of Transients	176			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	DMSO-d6			
Spectrum Offset (Hz)	14370.3350	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C)	26.400							

 13 C NMR (125MHz, DMSO-d_c) δ = 162.88 (br d, J=243.9 Hz, 1C), 159.05, 152.10, 146.94 (br d, J=6.2 Hz, 1C), 137.70, 135.99, 131.12 (d, J=8.0) Hz, 1C), 127.17, 122.18, 121.86, 114.11 (br d, J=20.6 Hz, 1C), 112.72 (br d, J=20.1 Hz, 1C), 112.36, 61.68, 35.66, 25.63, 23.09

773 6.5 ¹H NMR and ¹³C NMR for compound **13**

10 Ше

Multiplate Integrals Sum 10.69 Number of Musici

774

IPV 1.17 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

manufers megnals out 15:00 number of nuclei 15113							
Acquisition Time (sec)	4.9935	Comment	Comment IPV 1.17 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe				
Date	Jan 16 2015	Date Stamp	Jan 16 2015 File Name G:\2015.01\2015.01.16.i5_IPV_1.17_H1_1D.fid\/fid				fid
Frequency (MHz)	498.1184	Nucleus	1H	Number of Transients	16	Original Points Count	34868
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6982.63
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	3005.9861	Spectrum Type	standard	Sweep Width (Hz)	6982.52
Temperature (degree C	26.400						

¹H NMR (498MHz, CHLOROFORM-d) δ = 8.91 (br s, 1H), 8.21 (br s, 1H), 7.72 (br d, *J*=9.8 Hz, 1H), 7.35 - 7.29 (m, 1H), 7.01 (d, *J*=7.8 Hz, 1H), 6.97 (dt, *J*=1.9, 8.4 Hz, 1H), 6.92 (d, *J*=9.7 Hz, 1H), 6.59 (br d, *J*=7.6 Hz, 1H), 5.07 (br d, *J*=8.0 Hz, 1H), 4.58 (td, *J*=4.1, 47.3 Hz, 2H), 3.95 - 3.80 (m, 2H), 3.73 - 3.66 (m, 1H), 3.57 (br s, 1H), 2.57 - 2.47 (m, 1H), 2.17 - 2.01 (m, 3H)

775

776

IPV 1.17 125 266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 19 C's

Acquisition Time (sec)	1.9958							
Comment	IPV 1.17 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of							
	solvent signal							
Date	Jan 16 2015	Date Stamp	Jan 16 2015	File Name	F:\Schirrma\2015.01\2015.01.16.i5_IPV_1.17_C13_APT_ad.fid\fid			
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	204			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d			
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C)	26 400							

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.16 (d, *J*=247.2 Hz, 1C), 159.38, 151.87, 145.27 (d, *J*=6.2 Hz, 1C), 136.32 (br s, 1C), 135.42, 130.55 (d, *J*=8.3 Hz, 1C), 126.96, 121.10, 121.02 (br d, *J*=2.8 Hz, 1C), 114.41 (br d, *J*=21.2 Hz, 1C), 112.49 (br d, *J*=21.9 Hz, 1C), 110.70, 83.17 (d, *J*=166.2 Hz, 1C), 62.02, 48.61, 39.14 (d, *J*=19.4 Hz, 1C), 35.80, 22.84

777 6.6 ¹H NMR and ¹³C NMR for compound 14

Multiplets Integrals Sum	21.05 Number o	f Nuclei 23 H's					
Acquisition Time (sec)	4.9935	Comment	IPV 1.18 498.118 M	Hz H1 1D in cdcl3 (ref. to	CDCI3 @ 7.26 ppm),	temp 26.4 C -> actual temp	= 27.0 C, autoxdb probe
Date	Jan 16 2015	Date Stamp	Jan 16 2015	File Name	G:\2015.01\2015.01.	16.i5_IPV_1.18_H1_1D.fid	\fid
Frequency (MHz)	498.1184	Nucleus	1H	Number of Transients	16	Original Points Count	34868
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6982.63
Solvent	cdcl3	Spectrum Offset (Hz)	3005.9861	Spectrum Type	standard	Sweep Width (Hz)	6982.52
Temperature (degree C)	26.400						

IPV 1.18 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, cdcl₃) δ = 8.47 (br s, 1H), 8.17 (s, 1H), 7.72 (br d, *J*=9.8 Hz, 1H), 7.33 (dt, *J*=5.8, 7.9 Hz, 1H), 7.01 (d, *J*=7.7 Hz, 1H), 6.96 (dt, *J*=2.1, 8.4 Hz, 1H), 6.93 - 6.84 (m, 3H), 6.70 - 6.55 (m, 1H), 5.14 - 5.01 (m, 1H), 4.64 - 4.42 (m, 2H), 3.94 - 3.85 (m, 1H), 3.72 - 3.63 (m, 1H), 3.59 - 3.49 (m, 1H), 3.39 (br s, 1H), 2.57 - 2.48 (m, 1H), 2.16 - 2.08 (m, 2H), 2.07 - 2.01 (m, 1H), 2.01 - 1.81 (m, 2H)

778

779

IPV 1.18 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 20 C's

multipleto integralo dan	i o.oo inumber of inucier	2000						
Acquisition Time (sec)	1.9958]						
Comment	IPV 1.18 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal							
Date	Jan 16 2015	Date Stamp	Jan 16 2015					
File Name	C:\Users\admin\Documents\	C:\Users\admin\Documents\NMR jan2015\2015.01\2015.01.16./5 IPV 1.18 C13 APT ad.fid\fid						
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	104			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3			
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C)	26.400							

¹³C NMR (125MHz, cdcl₃) δ = 163.17 (d, *J*=247.2 Hz, 1C), 159.44, 151.90, 145.23 (d, *J*=6.2 Hz, 1C), 137.10, 130.68 (br d, *J*=8.0 Hz, 1C), 126.97, 122.43, 120.94, 120.92, 114.37 (d, *J*=21.2 Hz, 1C), 112.30 (d, *J*=22.2 Hz, 1C), 110.50, 81.97 (d, *J*=164.4 Hz, 1C), 62.07, 48.69, 35.73, 35.28 (d, *J*=5.2 Hz, 1C), 30.59 (d, *J*=19.4 Hz, 1C), 22.91

780 6.7 ¹H NMR and ¹³C NMR for compound **15**

			IPV 1.21 498.1	18 MHz H1 1D in cdcl3 (re	f. to CDCI3 @ 7.26 ppm), temp 26.4 C -> actual tem	np = 27.0 C, autoxdb probe
Multiplets Integrals Sum	23.28 Number of N	luclei 24 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.21 498.118 MHz	H1 1D in cdcl3 (ref. to CD	CI3 @ 7.26 ppm), temp:	26.4 C -> actual temp = 27.	0 C, autoxdb probe
Date	Jan 16 2015	Date Stamp	Jan 16 2015				
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.01	\2015.01.16.i5_IPV_1.2	1_H1_1D.fid\fid		Frequency (MHz)	498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

¹H NMR (498MHz, $cdcl_3$) $\delta = 8.47$ (br s, 1H), 8.18 (s, 1H), 7.72 (br d, *J*=9.7 Hz, 1H), 7.33 (dt, *J*=5.9, 8.0 Hz, 1H), 7.06 - 6.96 (m, 2H), 6.90 (td, *J*=1.9, 9.7 Hz, 1H), 6.60 (br d, *J*=8.6 Hz, 1H), 5.25 - 5.08 (m, 1H), 5.05 (br d, *J*=7.3 Hz, 1H), 3.92 - 3.82 (m, 1H), 3.73 - 3.61 (m, *J*=8.1 Hz, 1H), 3.53 - 3.42 (m, 1H), 3.34 (br s, 1H), 2.44 - 2.44 (m, 1H), 2.59 - 2.42 (m, 2H), 2.41 - 2.28 (m, 2H), 2.20 - 2.20 (m, 1H), 2.28 - 2.04 (m, 4H)

781

IPV 1.21 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 22 C's

Acquisition Time (sec)	1.9958						
Comment	2V 1.21 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of olvent signal						
Date	Jan 16 2015	Date Stamp	Jan 16 2015				
File Name	C:\Users\admin\Documents\	C:\Users\admin\Documents\NMR jan2015\2015.01.2015.01.16.i5 IPV 1.21 C13 APT ad.fid\fid					
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	196		
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad		
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3		
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38		
Tomporatura (dograd C)	26.400						

¹³C NMR (125MHz, cdcl₃) δ = 163.19 (d, *J*=247.5 Hz, 1C), 159.47, 152.00, 145.08 (d, *J*=6.2 Hz, 1C), 137.78, 137.22, 130.65 (br d, *J*=8.3 Hz, 1C), 127.02, 122.38, 120.92 (d, *J*=2.6 Hz, 1C), 114.48 (br d, *J*=21.2 Hz, 1C), 112.42 (d, *J*=21.9 Hz, 1C), 110.53, 87.30 (br d, *J*=206.5 Hz, 1C), 62.10, 48.62, 43.31, 35.79, 33.88 (d, *J*=4.4 Hz, 1C), 33.71 (d, *J*=4.6 Hz, 1C), 27.62 (br d, *J*=11.9 Hz, 1C), 22.81

6.8 ¹H NMR and ¹³C NMR for compound **16** 784

Multiplets Integrals Sum 22.32 Number of Nuclei 23 H's							
Acquisition Time (sec)	4.9997	Comment	Comment IPV 1.22 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe				
Date	Jan 16 2015	Date Stamp	Jan 16 2015	File Name	G:\2015.01\2015.01.1	6.i5_IPV_1.22_H1_1D.fid\	fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42
Temperature (degree C)	26.400						

IPV 1.22 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, CHLOROFORM-d) δ = 8.77 (d, J=34.6 Hz, 1H), 8.18 (s, 1H), 7.69 (br d, J=9.9 Hz, 1H), 7.41 - 7.29 (m, 1H), 7.08 - 6.94 (m, 2H), 6.93 - 6.85 (m, 1H), 6.55 (br d, J=8.6 Hz, 1H), 5.19 (d, J=56.8 Hz, 1H), 5.09 (br t, J=7.0 Hz, 1H), 4.86 (quind, J=6.6, 55.7 Hz, 1H), 4.74 - 4.62 (m, 1H), 4.21 (br sxt, J=7.8 Hz, 1H), 3.95 - 3.84 (m, 1H), 3.76 - 3.65 (m, 1H), 3.01 - 2.90 (m, 1H), 2.76 - 2.60 (m, 1H), 2.59 - 2.50 (m, 1H), 2.42 -1.94 (m, 5H)

785

786

IPV 1.22 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 37 C's

Acquisition Time (sec)	1.9958						
Comment	PV 1.22 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal						
Date	Jan 16 2015	Date Stamp	Jan 16 2015				
File Name	C:\Users\admin\Documents\	NMR jan2015\2015.01\201	5.01.16.i5_IPV_1.22_C13_AP	T_ad.fid∖fid			
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	220		
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad		
Receiver Gain	32.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3		
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38		
Temperature (demos C)	06.400						

Temperature (degree C) 26.400

 13 C NMR (125MHz, cdcl₃) δ = 163.19 (d, J=247.8 Hz, 1C), 158.89, 158.57, 152.09, 152.06, 144.73, 137.84, 137.31, 130.81 (d, J=8.3 Hz, 1C), 130.71 - 130.64 (m, 1C), 130.67 (br d, J=8.0 Hz, 1C), 127.03, 127.00, 122.31, 122.14, 121.23 (br d, J=2.6 Hz, 1C), 121.10 (br d, J=2.6 Hz, 1C), 114.54 (br d, J=21.2 Hz, 1C), 112.62 (d, J=4.9 Hz, 1C), 112.47 (br d, J=4.9 Hz, 1C), 110.71, 110.62, 86.84 (br d, J=200.3 Hz, 1C), 81.67 (br d, J=200.3 Hz, J=210.6 Hz, 1C), 61.84, 48.53, 48.46, 40.57 (d, J=8.3 Hz, 1C), 39.97 (d, J=20.1 Hz, 1C), 39.83 (d, J=21.2 Hz, 1C), 38.55 (d, J=3.4 Hz, 1C), 38.37 (br d, J=3.6 Hz, 1C), 35.84, 35.80, 34.35 (br d, J=23.0 Hz, 1C), 22.74, 22.70

787 6.9 ¹H NMR and ¹³C NMR for compound **17**

40.1.8-

Multiplate Intermedia Orana 40.50 Manufactor of Marchai

788

IPV 1.19 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

multiplets integrals outil 13:55° Multiplet of Multiplet								
Acquisition Time (sec)	4.9997	Comment	IPV 1.19 498.118 MH	z H1 1D in cdcl3 (ref. to CE	OCI3 @ 7.26 ppm), temp	26.4 C -> actual temp = 27.	0 C, autoxdb probe	
Date	Jan 16 2015	Date Stamp	Jan 16 2015					
File Name	C:\Users\admin\Documents\NMR jan2015\2015.01\2015.01.16.i5_IPV_1.19_H1_1D.fid\fid					Frequency (MHz)	498.1178	
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768	
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3	
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26,400	

¹H NMR (498MHz, cdcl₃) δ = 7.81 (s, 1H), 7.60 (d, *J*=9.9 Hz, 1H), 7.27 (br s, 1H), 7.01 (br d, *J*=7.7 Hz, 1H), 6.92 (br d, *J*=9.0 Hz, 2H), 6.51 (br d, *J*=9.9 Hz, 1H), 5.23 (br d, *J*=59.7 Hz, 1H), 5.02 (d, *J*=7.0 Hz, 1H), 4.50 - 4.17 (m, 4H), 4.00 - 3.89 (m, 1H), 3.78 - 3.69 (m, 1H), 2.53 - 2.38 (m, 1H), 2.11 - 1.94 (m, 3H)

789

790

IPV 1.19 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrats Sum 0.00 Number of Nuclei 20 C's

Acquisition mine (see)	1.3350						
Comment	IPV 1.19 125.266 MHz C13 solvent signal	[H1] APT_ad in cdcl3 (ref. t	to CDCI3 @ 77.06 ppm), temp	26.4 C -> actual temp = 2	7.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of		
Date	Jan 16 2015	Date Stamp	Jan 16 2015				
File Name	C:\Users\admin\Documents\NMR jan2015/2015.01/2015.01.16.i5_IPV_1.19_C13_APT_ad.fid\fid						
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	188		
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad		
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3		
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38		
Temperature (degree C)	26.400						

 $^{13}C \text{ NMR } (125\text{ MHz}, \text{cdcl}_3) \delta = 163.12 \text{ (d}, J = 247.0 \text{ Hz}, 1\text{C}), 161.37, 152.73, 138.07, 135.43, 130.44, 130.38, 125.96, 121.56, 121.22 \text{ (d}, J = 2.6 \text{ Hz}, 1\text{C}), 114.19 \text{ (d}, J = 21.2 \text{ Hz}, 1\text{C}), 112.68 \text{ (br d}, J = 22.2 \text{ Hz}, 1\text{C}), 111.30, 82.43 \text{ (br d}, J = 204.7 \text{ Hz}, 1\text{C}), 61.92, 48.71, 38.58, 36.43, 35.78, 22.84$

791 6.10 ¹H NMR and ¹³C NMR for compound **18**

Multiplets Integrals Sum	23.89 Number of N	uclei 25 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.28XX 498.118 M	Hz H1 1D in cdcl3 (ref. to	CDCI3 @ 7.26 ppm), terr	p 26.4 C -> actual temp = 2	7.0 C, autoxdb probe
Date	Jan 27 2015	Date Stamp	Jan 27 2015				
File Name	C:\Users\admin\Docume	ents\NMR jan2015\2015.01	2015.01.27.i5_IPV_1.28	3XX_H1_1D.fid\fid		Frequency (MHz)	498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

IPV 1.28XX 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, $cdcl_3$) δ = 8.55 (br s, 1H), 8.19 (s, 1H), 7.70 (br d, *J*=9.9 Hz, 1H), 7.34 (dt, *J*=5.9, 7.9 Hz, 1H), 7.01 (d, *J*=7.7 Hz, 1H), 6.97 (dt, *J*=2.0, 8.2 Hz, 1H), 6.87 (br d, *J*=9.5 Hz, 1H), 6.55 (br d, *J*=8.6 Hz, 1H), 5.06 (br d, *J*=7.7 Hz, 1H), 4.18 - 4.07 (m, 1H), 3.90 - 3.81 (m, 1H), 3.67 (dt, *J*=7.1, 9.6 Hz, 1H), 2.52 (s, 1H), 2.23 - 1.81 (m, 9H), 1.68 - 1.51 (m, 2H), 1.45 - 1.29 (m, 1H)

792

793

IPV 1.28XX 125 266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 22 C's

Acquisition Time (sec)	1.9958				
Comment	IPV 1.28XX 125.266 MHz 0	C13[H1] APT_ad in cdcl3 (r	ef. to CDCI3 @ 77.06 ppm), f	emp 26.4 C -> actual temp	= 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side
	of solvent signal				
Date	Jan 27 2015	Date Stamp	Jan 27 2015		
File Name	F:\Schirrma\2015.01\2015.0	1.27.i5_IPV_1.28XX_C13_/	APT_ad.fid\fid	Frequency (MHz)	125.2656
Nucleus	13C	Number of Transients	220	Original Points Count	67510
Points Count	131072	Pulse Sequence	APT_ad	Receiver Gain	30.00
SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	14370.3086
Spectrum Type	APT	Sweep Width (Hz)	33826.38	Temperature (degree C)	26.400

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.19 (d, *J*=247.5 Hz, 1C), 158.69, 152.10, 144.69, 137.86, 137.28, 130.73 (br d, *J*=8.3 Hz, 1C), 127.03, 122.34, 121.23 (d, *J*=2.8 Hz, 1C), 114.49 (br d, *J*=21.2 Hz, 1C), 112.53 (br d, *J*=22.2 Hz, 1C), 110.63, 61.82, 48.51, 45.54, 38.59, 35.80, 32.43 (br t, *J*=24.8 Hz, 1C), 32.36 (br t, *J*=24.6 Hz, 1C), 28.92 (br dd, *J*=9.3, 30.7 Hz, 1C), 22.69 \mathbb{R}^{12}_{12015}

794 6.11 ¹H NMR and ¹³C NMR for compound **19**

Multiplets Integrals Sum	23.29 Number of N	luclei 25 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.23 498.118 MHz	H1 1D in cdcl3 (ref. to CD	OCI3 @ 7.26 ppm), temp	26.4 C -> actual temp = 27	.0 C, autoxdb probe
Date	Jan 20 2015	Date Stamp	Jan 20 2015				
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.01	1\2015.01.20.i5_IPV_1.2	3_H1_1D.fid\fid		Frequency (MHz)	498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

IPV 1.23 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, cdcl₃) δ = 8.88 (br s, 1H), 8.16 (s, 1H), 7.68 (br d, *J*=9.9 Hz, 1H), 7.28 - 7.28 (m, 1H), 7.29 (dt, *J*=5.9, 8.1 Hz, 1H), 7.03 (d, *J*=7.7 Hz, 1H), 6.99 - 6.89 (m, 2H), 6.56 (br d, *J*=8.4 Hz, 1H), 5.07 (br d, *J*=7.3 Hz, 1H), 4.74 - 4.72 (m, 1H), 4.66 - 4.51 (m, 2H), 3.95 - 3.89 (m, 1H), 3.88 - 3.81 (m, 1H), 3.80 - 3.71 (m, 2H), 3.71 - 3.57 (m, 3H), 3.46 (br s, 1H), 2.56 - 2.45 (m, 1H), 2.15 - 1.96 (m, 3H)

795

796

IPV 1.23 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 21 C's

Acquisition Time (sec)	1 9958				
Comment	IPV 1.23 125.266 MHz C13 solvent signal	[H1] APT_ad in cdcl3 (ref.	to CDCI3 @ 77.06 ppm), temp	26.4 C -> actual temp = 2	7.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of
Date	Jan 20 2015	Date Stamp	Jan 20 2015		
File Name	C:\Users\admin\Documents\	NMR jan2015\2015.01\201	5.01.20.i5_IPV_1.23_C13_AP	T_ad.fid\fid	
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	192
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38
Temperature (degree C)	26.400				

¹³C NMR (125MHz, cdcl₃) δ = 163.12 (d, *J*=247.0 Hz, 1C), 159.31, 151.78, 145.54 (d, *J*=6.5 Hz, 1C), 137.74, 137.11, 130.48 (br d, *J*=8.0 Hz, 1C), 126.81, 122.39, 121.09 (d, *J*=3.1 Hz, 1C), 114.30 (br d, *J*=21.2 Hz, 1C), 112.56 (br d, *J*=22.2 Hz, 1C), 110.60, 82.89 (d, *J*=169.8 Hz, 1C), 70.70, 70.26 (d, *J*=19.6 Hz, 1C), 61.90, 48.62, 38.46, 35.71, 22.83

797 6.12 ¹H NMR and ¹³C NMR for compound **20**

IPV 1.31 399.984 MHz H1 1D in cdcl3 (ref. to	to CDCI3 @ 7.26 ppm), temp 25.9 C ->	> actual temp = 27.0 C, onenmr probe
--	--------------------------------------	--------------------------------------

Vultiplets Integrals Sum 22.38 Number of Nuclei 21 H's							
Acquisition Time (sec) 4.9999	Comment	IPV 1.31 399.984 MH	z H1 1D in cdcl3 (ref. to CD	OCI3 @ 7.26 ppm), temp	25.9 C -> actual temp = 27.	0 C, onenmr probe	
Date Jan 23 20	D15 Date Stamp	Jan 23 2015					
File Name C:\Users	admin\Documents\NMR jan2015\2015	01\2015.01.23.mr4_IPV_1	.31_H1_1D.fid\fid		Frequency (MHz)	399.9845	
Nucleus 1H	Number of Transients	16	Original Points Count	24038	Points Count	32768	
Pulse Sequence s2pul	Receiver Gain	24.00	SW(cyclical) (Hz)	4807.69	Solvent	cdcl3	
Spectrum Offset (Hz) 1947.606	57 Spectrum Type	standard	Sweep Width (Hz)	4807.55	Temperature (degree C)	25.900	

¹H NMR (400MHz, cdcl₃) δ = 8.74 (br s, 1H), 8.17 (s, 1H), 7.68 (br d, *J*=9.8 Hz, 1H), 7.34 - 7.24 (m, 2H), 7.20 (dt, *J*=5.9, 7.8 Hz, 1H), 7.06 - 6.97 (m, 2H), 6.87 (dd, *J*=2.3, 8.4 Hz, 1H), 6.83 (d, *J*=7.9 Hz, 1H), 6.73 (br d, *J*=9.7 Hz, 1H), 6.55 (d, *J*=8.5 Hz, 1H), 4.94 - 4.86 (m, 1H), 4.62 (dd, *J*=6.2, 14.8 Hz, 1H), 4.33 (br dd, *J*=5.9, 19.8 Hz, 1H), 3.58 (br s, 1H), 3.46 - 3.30 (m, 1H), 2.48 - 2.35 (m, 1H), 2.05 - 1.89 (m, 3H)

798

799

IPV 1.31 100.587 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 23 C's

Acquisition Time (sec)	2.0000				
Comment	IPV 1.31 100.587 MHz C13	[H1] APT_ad in cdcl3 (ref. t	o CDCI3 @ 77.06 ppm), temp	25.9 C -> actual temp = 27	7.0 C, onenmr probe C & CH2 same, CH & CH3 opposite side of
	solvent signal				
Date	Jan 23 2015	Date Stamp	Jan 23 2015		
File Name	C:\Users\admin\Documents\	NMR jan2015\2015.01\2015	5.01.23.mr4_IPV_1.31_C13_A	<pre>\PT_ad.fid\fid</pre>	
Frequency (MHz)	100.5872	Nucleus	13C	Number of Transients	476
Original Points Count	54348	Points Count	65536	Pulse Sequence	APT_ad
Receiver Gain	30.00	SW(cyclical) (Hz)	27173.91	Solvent	cdcl3
Spectrum Offset (Hz)	11531.6846	Spectrum Type	APT	Sweep Width (Hz)	27173.50
Temperature (degree C)	25.900				

¹³C NMR (101MHz, cdcl₃) δ = 163.31 - 163.28 (m, 1C), 163.31 - 163.28 (m, 1C), 163.80 (d, *J*=97.0 Hz, 1C), 161.35 (d, *J*=95.0 Hz, 1C), 159.17, 151.78, 145.01 (d, *J*=6.2 Hz, 1C), 137.22, 134.43 (d, *J*=3.3 Hz, 1C), 130.55 (br d, *J*=8.3 Hz, 1C), 129.31 (br d, *J*=8.3 Hz, 1C), 126.97, 122.17, 120.78 (br d, *J*=2.5 Hz, 1C), 115.37 (br d, *J*=21.6 Hz, 1C), 114.36 (d, *J*=21.1 Hz, 1C), 112.24 (br d, *J*=22.0 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 115.37 (br d, *J*=21.6 Hz, 1C), 114.36 (d, *J*=21.1 Hz, 1C), 112.24 (br d, *J*=22.0 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 115.37 (br d, *J*=21.6 Hz, 1C), 114.36 (d, *J*=21.1 Hz, 1C), 112.24 (br d, *J*=22.0 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96, 48.48, 42.21, 126.76 (br d, *J*=2.5 Hz, 1C), 110.59, 61.96 (br d, *J*=2.5 Hz, 1C), 110.59 (br d, J=2.5 Hz, 1C), 110.59 (br d

800 6.13 ¹H NMR and ¹³C NMR for compound **21**

IPV 1.29XX	498.118 MHz H1 1	1D in cdcl3 (ref. to CDCl3	@ 7.26 ppm), temp 26.4 C -> actual tem	p = 27.0 C, autoxdb probe
			~		

Multiplets Integrals Sum 21.81 Number of Nuclei 21 H's							
Acquisition Time (sec)	4.9997	Comment	IPV 1.29XX 498.118 N	IHz H1 1D in cdcl3 (ref. to	CDCI3 @ 7.26 ppm), ten	np 26.4 C -> actual temp = 2	27.0 C, autoxdb probe
Date	Jan 27 2015	Date Stamp	Jan 27 2015				
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.01	\2015.01.27.i5_IPV_1.29	9XX_H1_1D.fid\fid		Frequency (MHz)	498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

¹H NMR (498MHz, cdcl₃) δ = 8.77 (br s, 1H), 8.22 (s, 1H), 7.73 (br d, *J*=9.7 Hz, 1H), 7.32 (dt, *J*=6.1, 7.8 Hz, 1H), 7.22 (br q, *J*=7.7 Hz, 1H), 7.12 (br d, *J*=7.5 Hz, 1H), 7.03 (br d, *J*=9.5 Hz, 1H), 6.99 (dt, *J*=2.2, 8.4 Hz, 1H), 6.93 - 6.81 (m, 2H), 6.75 (br d, *J*=9.5 Hz, 1H), 6.60 (br d, *J*=6.6 Hz, 1H), 4.99 - 4.92 (m, 1H), 4.69 (dd, *J*=6.2, 15.2 Hz, 1H), 4.42 (br s, 1H), 3.66 (br s, 1H), 3.54 - 3.40 (m, 1H), 2.45 (br qd, *J*=8.5, 11.8 Hz, 1H), 2.02 (dt, *J*=4.8, 7.9 Hz, 3H)

802

IPV 1.29XX 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 22 C's

Acquisition Time (sec)	1.9958							
Comment	IPV 1.29XX 125.266 MHz C of solvent signal	PV 1 29XX 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side f solvent signal						
Date	Jan 27 2015	Date Stamp	Jan 27 2015					
File Name	C:\Users\admin\Documents\A	MR jan2015\2015.01\2015	5.01.27.i5_IPV_1.29XX_C13_A	PT_ad.fid\fid				
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	172			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	32.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3			
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C)	26.400							

¹³C NMR (125MHz, cdcl₃) δ = 163.09 (br d, *J*=247.2 Hz, 1C), 163.03 (d, *J*=246.2 Hz, 1C), 159.26, 151.83, 145.02 (d, *J*=6.2 Hz, 1C), 141.34 (d, *J*=6.7 Hz, 1C), 137.41, 130.57 (br d, *J*=8.3 Hz, 1C), 130.13 (d, *J*=8.3 Hz, 1C), 127.06, 122.18, 120.77, 114.30 (d, *J*=21.2 Hz, 1C), 114.13 (br d, *J*=20.9 Hz, 1C), 112.32, 112.14, 110.56, 62.04, 48.61, 42.36, 35.67, 22.75

IPV 1.34 HPLC pure fraction 20.3 min - 22.0 min 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

Multiplets Integrals Sum 25.93 Number of Nuclei 24 H's							
Acquisition Time (sec)	4.9997						
Comment	IPV 1.34 HPLC pure frac	tion 20.3 min - 22.0 min 49	98.118 MHz H1 1D in cdcl	3 (ref. to CDCI3 @ 7.26 pp	m), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe		
Date	Apr 14 2015	Date Stamp	Apr 14 2015	File Name	F:\Schirrma\2015.04\2015.04.14.i5_IPV_1.34_20.3-22.0_H1_1D.fid\fid		
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16		
Original Points Count	30001	Points Count	65536	Pulse Sequence	s2pul		
Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	2388.2935	Spectrum Type	standard	Sweep Width (Hz)	6000.51		
Temperature (degree C)	26.400						

¹H NMR (498MHz, CHLOROFORM-d) δ = 8.86 (br s, 1H), 8.22 (s, 1H), 7.75 (br d, *J*=9.6 Hz, 1H), 7.32 - 7.25 (m, 3H), 7.03 (br d, *J*=6.3 Hz, 1H), 6.96 - 6.83 (m, 4H), 6.61 (br d, *J*=9.4 Hz, 1H), 5.02 (dd, *J*=1.7, 8.7 Hz, 1H), 4.66 (dd, *J*=6.2, 14.6 Hz, 1H), 4.49 (br s, 1H), 4.06 - 4.03 (m, 3H), 3.83 - 3.76 (m, 1H), 3.64 - 3.56 (m, 1H), 2.51 (qd, *J*=8.7, 11.9 Hz, 1H), 2.19 - 2.04 (m, 3H)

804

805

Jamie_Bailey, IPV_1_34 125.690 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe C & CH2 same, CH & CH3 opposite side of solvent signal

Multiplets Integrals Sur	n 0.00 Number of Nu	clei 25 C's		
Acquisition Time (sec)	2.0000			
Comment	Jamie_Bailey, IPV_1_34 opposite side of solvent s	125.690 MHz C13[H1] APT_a ignal	ad in cdcl3 (ref. to CDCl3 (2 77.06 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe C & CH2 same, CH & CH3
Date	May 13 2015	Date Stamp	May 13 2015	
File Name	F:\Schirrma\2015.05\201	5.05.13.u5_IPV_1_34_loc12_1	2.20_C13_APT_ad.fid\fid	Frequency (MHz) 125.6902
Nucleus	13C	Number of Transients	648	Original Points Count 67568
Points Count	131072	Pulse Sequence	APT_ad	Receiver Gain 30.00
SW(cyclical) (Hz)	33783.79	Solvent	CHLOROFORM-d	Spectrum Offset (Hz) 14411.0176
Spectrum Type	APT	Sweep Width (Hz)	33783.53	Temperature (degree C) 27.600

¹³C NMR (126MHz, CHLOROFORM-d) δ = 163.17 (d, *J*=247.4 Hz, 1C), 159.37, 155.15 (br d, *J*=252.1 Hz, 1C), 151.86, 148.25 (d, *J*=181.2 Hz, 1C), 145.13, 145.08, 137.84, 137.51, 130.61 (br d, *J*=8.2 Hz, 1C), 127.15, 122.80 (d, *J*=10.1 Hz, 1C), 122.20, 120.86 (br d, *J*=2.3 Hz, 1C), 114.45 (d, *J*=21.1 Hz, 1C), 112.30 (d, *J*=21.9 Hz, 1C), 111.82 (br d, *J*=19.3 Hz, 1C), 111.79 (br d, *J*=19.3 Hz, 1C), 110.57, 62.10, 62.02 - 61.92 (m, 1C), 48.57, 36.60, 35.82, 22.84

806 6.15 ¹H NMR and ¹³C NMR for compound **23**

Multiplets Integrals Sun	n 19.83 Number of N	luclei 19 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.33 498.118 MH	z H1 1D in cdcl3 (ref. to CE	OCI3 @ 7.26 ppm), temp	26.4 C -> actual temp = 27	0 C, autoxdb probe
Date	Jan 23 2015	Date Stamp	Jan 23 2015				
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.01	1\2015.01.23.i5_IPV_1.3	3_H1_1D.fid\fid		Frequency (MHz)	498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

IPV 1.33 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, cdcl₃) δ = 10.50 (br s, 1H), 8.31 (br s, 1H), 7.73 (d, *J*=9.9 Hz, 1H), 7.49 (br s, 2H), 7.33 - 7.28 (m, 1H), 7.05 (t, *J*=8.7 Hz, 2H), 7.02 - 6.96 (m, 2H), 6.92 (td, *J*=2.0, 9.5 Hz, 1H), 6.58 (br d, *J*=8.1 Hz, 1H), 5.12 (br d, *J*=8.1 Hz, 1H), 4.02 - 3.96 (m, 1H), 3.83 - 3.76 (m, 1H), 2.62 - 2.53 (m, 1H), 2.25 - 2.10 (m, 3H)

807

808

IPV 1.33 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 19 C's

Acquisition Time (sec)	1.9958				
Comment	IPV 1.33 125.266 MHz C1 solvent signal	3[H1] APT_ad in cdcl3 (ref	. to CDCI3 @ 77.06 ppm), ter	mp 26.4 C -> actual temp =	27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of
Date	Jan 23 2015	Date Stamp	Jan 23 2015	File Name	F:\Schirrma\2015.01\2015.01.23.i5_IPV_1.33_C13_APT_ad.fid\fid
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	276
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38
Temperature (degree C)	26.400				

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.24 (d, *J*=247.8 Hz, 1C), 159.37 (d, *J*=243.4 Hz, 1C), 157.15, 152.12, 144.68, 130.70 (br d, *J*=8.3 Hz, 1C), 127.17, 122.14, 122.10 (br s, 1C), 121.13, 121.11, 115.65 (br d, *J*=22.7 Hz, 1C), 114.64 (d, *J*=21.4 Hz, 1C), 112.59 (d, *J*=22.2 Hz, 1C), 110.91, 62.08, 48.66, 35.86, 22.79

6.16 ¹H NMR and ¹³C NMR for compound **24**

Multiplets Integrals Sum	19.94 Number of N	luclei 20 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.36 498.118 MHz	H1 1D in cdcl3 (ref. to CD	OCI3 @ 7.26 ppm), temp	26.4 C -> actual temp = 27.	0 C, autoxdb probe
Date	Jan 23 2015	Date Stamp	Jan 23 2015				
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.01	\2015.01.23.i5_IPV_1.3	6_H1_1D.fid\fid		Frequency (MHz)	498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

IPV 1.36 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, $cdcl_3$) $\delta = 10.64$ (br s, 1H), 8.29 (s, 1H), 7.69 (br d, *J*=9.7 Hz, 1H), 7.57 (br d, *J*=6.8 Hz, 1H), 7.33 (br dt, *J*=6.0, 7.9 Hz, 1H), 7.26 (dt, *J*=6.6, 8.1 Hz, 1H), 7.18 - 7.06 (m, 1H), 7.03 (d, *J*=7.9 Hz, 1H), 7.01 - 6.99 (m, 1H), 6.99 (dt, *J*=2.0, 8.4 Hz, 1H), 6.93 (br td, *J*=2.1, 9.6 Hz, 1H), 6.81 (ddt, *J*=0.7, 2.6, 8.3 Hz, 1H), 6.55 (br d, *J*=9.3 Hz, 1H), 5.12 (br d, *J*=7.9 Hz, 1H), 4.03 - 3.95 (m, 1H), 3.85 - 3.75 (m, 1H), 2.66 - 2.55 (m, 1H), 2.16 (br s, 3H)

810

811

IPV 1.36 125 266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 22 C's

Acquisition Time (sec)	1.9958				
Comment	IPV 1.36 125.266 MHz C1 solvent signal	3[H1] APT_ad in cdcl3 (ref	to CDCI3 @ 77.06 ppm), ter	mp 26.4 C -> actual temp =	27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of
Date	Jan 23 2015	Date Stamp	Jan 23 2015	File Name	F:\Schirrma\2015.01\2015.01.23.i5_IPV_1.36_C13_APT_ad.fid\fid
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	512
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	32.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38
Temperature (degree C)	26,400				

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.25 (d, *J*=247.8 Hz, 1C), 163.00 (d, *J*=244.7 Hz, 1C), 157.16, 152.14, 144.67 (br d, *J*=7.7 Hz, 1C), 139.50 (br d, *J*=11.1 Hz, 1C), 138.17, 130.76 (br d, *J*=8.3 Hz, 1C), 130.01 (br d, *J*=9.3 Hz, 1C), 127.10, 122.22, 121.15 (d, *J*=2.8 Hz, 1C), 115.41, 114.69 (br d, *J*=21.2 Hz, 1C), 112.60 (br d, *J*=22.2 Hz, 1C), 111.13, 110.82 (br d, *J*=21.4 Hz, 1C), 107.74 (br d, *J*=26.6 Hz, 1C), 62.12, 48.66, 35.88, 22.75

812 6.17 ¹H NMR and ¹³C NMR for compound **25**

Multiplets Integrals Sum 20.87 Number of Nuclei 21 H's								
Acquisition Time (sec)	4.9997	Comment	IPV 1.37 498.118 Mi	Hz H1 1D in cdcl3 (ref. to C	DCI3 @ 7.26 ppm), ten	np 26.4 C -> actual temp = :	27.0 C, autoxdb probe	
Date	May 6 2015	Date Stamp	May 6 2015	File Name	F:\Schirrma\2015.05\2	2015.05.06.i5_IPV_1.37_H	1_1D.fid\fid	
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001	
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2935	Spectrum Type	standard	Sweep Width (Hz)	6000.51	
Temperature (degree C)	26 400							

IPV 1.37 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, CHLOROFORM-d) δ = 10.73 (br s, 1H), 8.58 (t, *J*=7.9 Hz, 1H), 8.35 (s, 1H), 8.79 - 8.09 (m, 1H), 7.69 (d, *J*=9.9 Hz, 1H), 7.31 - 7.25 (m, 1H), 7.24 - 7.19 (m, 1H), 7.19 - 7.09 (m, 3H), 7.04 - 6.99 (m, 1H), 6.96 (dt, *J*=2.3, 8.4 Hz, 1H), 6.91 (td, *J*=1.8, 9.5 Hz, 1H), 6.51 (d, *J*=9.9 Hz, 1H), 5.07 (dd, *J*=1.7, 8.0 Hz, 1H), 4.09 - 4.01 (m, 1H), 3.89 - 3.81 (m, 1H), 2.62 - 2.52 (m, 1H), 2.19 - 2.04 (m, 3H)

813

IPV 1.37 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 23 C's

Acquisition Time (sec)	1.9958				
Comment	IPV 1.37 125.266 MHz C1 solvent signal	3[H1] APT_ad in cdcl3 (re	f. to CDCI3 @ 77.06 ppm), te	mp 26.4 C -> actual temp :	= 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of
Date	May 6 2015	Date Stamp	May 6 2015	File Name	F:\Schirrma\2015.05\2015.05.06.i5_IPV_1.37_C13_APT_ad.fid\fid
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	444
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38
Tomporaturo (dograo C	1 26 400				

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.22 (d, *J*=247.8 Hz, 1C), 157.32, 152.31, 152.87 (d, *J*=242.8 Hz, 1C), 145.19 (d, *J*=5.9 Hz, 1C), 138.41, 138.19, 130.65 (br d, *J*=8.5 Hz, 1C), 126.89, 126.66, 124.67 (d, *J*=3.1 Hz, 1C), 124.24 (br d, *J*=8.0 Hz, 1C), 122.88, 122.51, 121.08 (d, *J*=3.1 Hz, 1C), 114.74 (d, *J*=19.1 Hz, 1C), 114.55 (d, *J*=21.2 Hz, 1C), 112.54 (br d, *J*=22.2 Hz, 1C), 111.39, 62.30, 48.58 (d, *J*=9.8 Hz, 1C), 36.04, 02.20

815 6.18 ¹H NMR and ¹³C NMR for compound **26**

PV 1.32 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp =	i = 27.0 C, a	autoxdb probe
---	---------------	---------------

Multiplets Integrals Sum 22.09 Number of Nuclei 22 H's								
Acquisition Time (sec)	4.9997	Comment	IPV 1.32 498.118 MH	z H1 1D in cdcl3 (ref. to CE	OCI3 @ 7.26 ppm), temp	26.4 C -> actual temp = 27	.0 C, autoxdb probe	
Date	Jan 23 2015	Date Stamp	Jan 23 2015					
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.0	1\2015.01.23.i5_IPV_1.3	2_H1_1D.fid\fid		Frequency (MHz)	498.1178	
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768	
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3	
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400	

¹H NMR (498MHz, cdcl₃) δ = 10.45 (br s, 1H), 8.27 (s, 1H), 7.69 (br d, *J*=9.9 Hz, 1H), 7.48 (br s, 1H), 7.31 (dt, *J*=6.0, 7.9 Hz, 1H), 7.10 (br d, *J*=4.4 Hz, 1H), 7.01 (td, *J*=0.7, 7.7 Hz, 1H), 6.98 (dt, *J*=2.6, 8.5 Hz, 2H), 6.95 - 6.84 (m, 2H), 6.55 (br d, *J*=8.2 Hz, 1H), 5.11 (br d, *J*=7.9 Hz, 1H), 3.97 (br s, 1H), 3.89 (s, 3H), 3.78 (br d, *J*=19.4 Hz, 1H), 2.65 - 2.54 (m, 1H), 2.24 - 2.11 (m, 3H)

817

IPV 1.32 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 23 C's

Acquisition Time (sec)	1.9958									
Comment	IPV 1.32 125.266 MHz C13 solvent signal	1.32 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of ent signal								
Date	Jan 23 2015	Date Stamp	Jan 23 2015							
File Name	C:\Users\admin\Documents\	NMR jan2015\2015.01\2015	5.01.23.i5_IPV_1.32_C13_AP	T_ad.fid\fid						
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	508					
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad					
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3					
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38					
Temperature (degree C)	26.400									

¹³C NMR (125MHz, cdcl₃) δ = 163.23 (d, *J*=247.8 Hz, 1C), 157.01, 152.08, 151.09, 149.10 - 149.10 (m, 1C), 150.10 (br d, *J*=247.8 Hz, 1C), 144.47 (br d, *J*=63.7 Hz, 1C), 131.41 (br d, *J*=7.5 Hz, 1C), 131.37 - 131.29 (m, 1C), 131.37 - 131.29 (m, 1C), 130.73 (br d, *J*=8.5 Hz, 1C), 127.04, 122.29, 121.13 (br d, *J*=2.6 Hz, 1C), 114.64 (br d, *J*=21.4 Hz, 1C), 113.73, 112.58 (br d, *J*=21.9 Hz, 1C), 110.97, 62.09, 56.60, 48.64, 35.87, 22.77

818 6.19 ¹H NMR and ¹³C NMR for compound **27**

Multiplets Integrals Sum 23.41 Number of Nuclei 23 H's							
Acquisition Time (sec)	4.9997	Comment	IPV 1.26 498.118 MHz	z H1 1D in cdcl3 (ref. to CE	OCI3 @ 7.26 ppm), temp	26.4 C -> actual temp = 27.	0 C, autoxdb probe
Date	Jan 23 2015	Date Stamp	Jan 23 2015				
File Name	Name C:\Users\admin\Documents\NMR (an2015)2015.01/2015.01 23.15 IPV 1.26 H1 1D.fid\fid Frequency (MHz) 498.1178						498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

IPV 1.26 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, cdcl₃) δ = 10.54 (br s, 1H), 8.28 (s, 1H), 7.65 (d, *J*=9.9 Hz, 1H), 7.57 - 7.42 (m, 2H), 7.33 - 7.28 (m, 1H), 7.22 (d, *J*=8.2 Hz, 2H), 7.02 - 6.95 (m, 2H), 6.91 (td, *J*=1.9, 9.6 Hz, 1H), 6.51 (br d, *J*=9.2 Hz, 1H), 5.09 (br d, *J*=8.1 Hz, 1H), 4.65 (td, *J*=6.4, 47.1 Hz, 2H), 4.01 - 3.94 (m, 1H), 3.80 - 3.71 (m, 1H), 3.01 (td, *J*=6.4, 23.4 Hz, 2H), 2.60 (s, 1H), 2.22 - 2.09 (m, 3H)

819

820

IPV 1.26 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 23 C's

Acquisition Time (sec)	1.9958				
Comment	IPV 1.26 125.266 MHz C13 solvent signal	3[H1] APT_ad in cdcl3 (ref.	to CDCI3 @ 77.06 ppm), ter	np 26.4 C -> actual temp =	27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of
Date	Jan 23 2015	Date Stamp	Jan 23 2015	File Name	F:\Schirrma\2015.01\2015.01.23.i5_IPV_1.26_C13_APT_ad.fid\fid
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	244
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38
Temperature (degree C)	26.400				

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.22 (d, *J*=247.5 Hz, 1C), 157.08, 152.05, 144.85, 144.80, 137.89, 136.57, 133.03, 132.98, 130.67 (br d, *J*=8.3 Hz, 1C), 129.54, 126.96, 121.15 (br d, *J*=2.6 Hz, 1C), 120.53, 114.60 (br d, *J*=21.2 Hz, 1C), 112.60 (br d, *J*=21.9 Hz, 1C), 110.96, 84.10 (d, *J*=168.8 Hz, 1C), 62.08, 48.63, 36.39 (d, *J*=20.4 Hz, 1C), 35.87, 22.73

821 6.20 ¹H NMR and ¹³C NMR for compound **29**

822

JB-RAN-03 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

Multiplets Integrals Sun	n 18.60 Number of N	luclei 18 H's					
Acquisition Time (sec)	4.9997	Comment	JB-RAN-03 498.118 M	/Hz H1 1D in cdcl3 (ref. to	CDCI3 @ 7.26 ppm), ten	np 26.4 C -> actual temp = 2	27.0 C, autoxdb probe
Date	Jan 12 2015	Date Stamp	Jan 12 2015				
File Name	C:\Users\admin\Docum	ents\NMR jan2015\2015.0	1\2015.01.12.i5_JB-RAN	-03_H1_1D.fid\fid		Frequency (MHz)	498.1178
Nucleus	1H	Number of Transients	16	Original Points Count	30001	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42	Temperature (degree C)	26.400

¹H NMR (498MHz, cdcl₃) δ = 4.94 (br s, 1H), 4.62 - 4.47 (m, 2H), 3.75 - 3.65 (m, 2H), 3.57 (t, *J*=5.2 Hz, 2H), 3.33 (br q, *J*=5.1 Hz, 2H), 1.44 (s, 2H), 3.57 (t, *J*=5.2 Hz, 2H), 3.33 (br q, *J*=5.1 Hz, 2H), 1.44 (s, 2H), 3.57 (t, *J*=5.2 Hz, 2H), 3.57 (t, J=5.2 Hz,

823

JB-RAN-03 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 4 C's

Acquisition Time (sec)	1.9958							
Comment	JB-RAN-03 125.266 MHz C of solvent signal	13[H1] APT_ad in cdcl3 (n	ef. to CDCl3 @ 77.06 ppm), ter	mp 26.4 C -> actual temp =	27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side			
Date	Jan 12 2015	Date Stamp	Jan 12 2015					
File Name	C:\Users\admin\Documents\M	C:\Users\admin\Documents\NMR jan2015\2015.01\2015.01.12.i5_JB-RAN-03_C13_APT_ad.fid\/id						
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	92			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3			
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C)	26.400							

 13 C NMR (125MHz, cdcl₃) δ = 82.95 (d, *J*=169.0 Hz, 1C), 70.43, 70.08 (d, *J*=19.6 Hz, 1C), 28.38

825 6.21 ¹H NMR and ¹³C NMR for compound **30**

826

			JB-RAN-04	498.118 MHz H1 1D in cdc	13 (ref. to CDCI3 @ 7.2	26 ppm), temp 26.4 C -> ac	tual temp = 27.0 C, autoxdb probe
Multiplets Integrals Sun	10.72 Number o	f Nuclei 11 H's					
Acquisition Time (sec)	4.9997	Comment	JB-RAN-04 498.118	B MHz H1 1D in cdcl3 (ref.	to CDCI3 @ 7.26 ppm), temp 26.4 C -> actual ten	np = 27.0 C, autoxdb probe
Date	Jan 12 2015	Date Stamp	Jan 12 2015	File Name	G:\2015.01\2015.01.	12.i5_JB-RAN-04_H1_1D.f	īd\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	cdcl3	Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42

Temperature (degree C) 26.400

¹H NMR (498MHz, cdcl₃) δ = 8.40 - 8.13 (m, 3H), 4.72 - 4.56 (m, 2H), 3.87 (t, *J*=4.8 Hz, 2H), 3.81 (td, *J*=3.8, 30.0 Hz, 2H), 3.34 - 3.24 (m, 2H)

827

828

829

JB-RAN-04 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 4 C's

Acquisition Time (sec)	1.9958				
Comment	JB-RAN-04 125.266 MHz C of solvent signal	13[H1] APT_ad in cdcl3 (re	ef. to CDCI3 @ 77.06 ppm), ter	np 26.4 C -> actual temp =	27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side
Date	Jan 12 2015	Date Stamp	Jan 12 2015		
File Name	C:\Users\admin\Documents\M	MR jan2015\2015.01\2015	5.01.12.i5_JB-RAN-04_C13_A	PT_ad.fid\fid	
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	1040
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	cdcl3
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38
Towns overfrom (downson Of	00.400				

 13 C NMR (125MHz, cdcl₃) δ = 83.14 (d, *J*=168.0 Hz, 1C), 70.29 (d, *J*=19.4 Hz, 1C), 66.77, 39.59

6.22 ¹H NMR and ¹³C NMR for compound **32**

		IPV 1.2	399.984 MHz H1 1D	in cdcl3 (ref. to CDCl3 @	7.26 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe
Multiplets Integrals Sun	1 20.04 Number of	of Nuclei 19 H's			
Acquisition Time (sec)	4.9999				
Comment	IPV 1.2 399.984 M	Hz H1 1D in cdcl3 (ref. to C	DCI3 @ 7.26 ppm), te	emp 25.9 C -> actual temp	= 27.0 C, onenmr probe
Date	Oct 23 2014	Date Stamp	Oct 23 2014	File Name	F:\2014.10\2014.10.23.mr4_IPV-1_2_H1_1D.fid\fid
Frequency (MHz)	399.9845	Nucleus	1H	Number of Transients	16
Original Points Count	24038	Points Count	32768	Pulse Sequence	s2pul
Receiver Gain	38.00	SW(cyclical) (Hz)	4807.69	Solvent	cdcl3
Spectrum Offset (Hz)	1947.6067	Spectrum Type	standard	Sweep Width (Hz)	4807.55
Temperature (degree C)	25.900				

¹H NMR (400MHz, cdcl₃) δ = 7.30 (d, *J*=8.4 Hz, 2H), 7.15 (d, *J*=7.4 Hz, 2H), 6.47 (br s, 1H), 3.82 (t, *J*=6.6 Hz, 2H), 2.81 (t, *J*=6.6 Hz, 2H), 1.51 (s, 9H), 1.49 (s, 1H)

IPV 1.2 100.587 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe C & CH2 same, CH & CH3 opposite side of solvent signal

Multiplets Integrals Sur	n 0.00 Number of Nucl	ei 90°s			
Acquisition Time (sec)	2.5000				
Comment	IPV 1.2 100.587 MHz C1 CH3 opposite side of solv	I3[H1] APT_ad in cdcl3 (re ent signal	f. to CDCI3 @ 77.06 ppm),	temp 25.9 C -> actual temp	e = 27.0 C, onenmr probe C & CH2 same, CH &
Date	Oct 23 2014	Date Stamp	Oct 23 2014		
File Name	F:\2014.10\2014.10.23.m	4_IPV-1_2_C13_APT_ad.	fid\fid	Frequency (MHz)	100.5872
Nucleus	13C	Number of Transients	264	Original Points Count	67935
Points Count	131072	Pulse Sequence	APT_ad	Receiver Gain	38.00
SW(cyclical) (Hz)	27173.91	Solvent	cdcl3	Spectrum Offset (Hz)	11531.7881
Spectrum Type	APT	Sweep Width (Hz)	27173.71	Temperature (degree C)	25.900
12					

 13 C NMR (101MHz, cdcl₃) $\delta = 152.83$, 136.78, 133.07, 129.50, 118.93, 80.47, 63.70, 38.49, 28.34

835 6.23 ¹H NMR and ¹³C NMR for compound **33**

		IPV 1.3	498.118 MHz H1 10	in cdcl3 (ref. to CDCl3 @	7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe
Multiplets Integrals Sun	n 18.07 Number o	of Nuclei 18 H's			
Acquisition Time (sec)	4.9997				
Comment	IPV 1.3 498.118 M	Hz H1 1D in cdcl3 (ref. to C	DCI3 @ 7.26 ppm), t	emp 26.4 C -> actual temp	= 27.0 C, autoxdb probe
Date	Oct 28 2014	Date Stamp	Oct 28 2014	File Name	F:\2014.10\2014.10.28.i5_IPV-1_3_H1_1D.fid\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16
Original Points Count	30001	Points Count	32768	Pulse Sequence	s2pul
Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60	Solvent	cdcl3
Spectrum Offset (Hz)	2388.2478	Spectrum Type	standard	Sweep Width (Hz)	6000.42
Tama anatuma (damaa O)	26.400				

 $\frac{\text{Temperature (degree C) } 26.400}{^{1}\text{H NMR } (498\text{MHz, cdcl}_3) \delta = 7.32 \text{ (br d, } J=8.2 \text{ Hz, } 2\text{H}), 7.17 \text{ (d, } J=7.9 \text{ Hz, } 2\text{H}), 6.46 \text{ (br s, } 1\text{H}), 4.60 \text{ (td, } J=6.6, 47.1 \text{ Hz, } 2\text{H}), 2.98}$

IPV 1.3 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal

Multiplets Integrals Sun	n 0.00 Number of Nuc	<i>lei</i> 11 C's			
Acquisition Time (sec)	2.4948				
Comment	IPV 1.3 125.266 MHz C1 CH3 opposite side of solve	3[H1] APT_ad in cdcl3 (ref ent signal	f. to CDCI3 @ 77.06 ppm),	temp 26.4 C -> actual temp	= 27.0 C, autoxdb probe C & CH2 same, CH &
Date	Oct 28 2014	Date Stamp	Oct 28 2014		
File Name	F:\2014.10\2014.10.28.i5	IPV-1_3_C13_APT_ad.fid	\fid	Frequency (MHz)	125.2656
Nucleus	13C	Number of Transients	376	Original Points Count	84389
Points Count	131072	Pulse Sequence	APT_ad	Receiver Gain	38.00
SW(cyclical) (Hz)	33826.64	Solvent	cdcl3	Spectrum Offset (Hz)	14370.3086
Spectrum Type	APT	Sweep Width (Hz)	33826.38	Temperature (degree C)	26.400

¹³C NMR (125MHz, cdcl₃) δ = 152.77, 136.98, 131.67 (br d, *J*=6.7 Hz, 1C), 129.48, 129.35, 118.79, 84.15 (br d, *J*=169.0 Hz, 1C), 80.49, 38.54, 36.25 (br d, *J*=20.4 Hz, 1C), 28.35

838

839 6.24 ¹H NMR and ¹³C NMR for compound **34**

Multiplets Integrals Sum	10.04 Number of N	luclei 10 H's					
Acquisition Time (sec)	4.9999	Comment	IPV 1.4 399.984 MHz	H1 1D in cdcl3 (ref. to CDC	CI3 @ 7.26 ppm), temp 2	5.9 C -> actual temp = 27.0) C, onenmr probe
Date	Oct 30 2014	Date Stamp	Oct 30 2014				
File Name	C:\Users\admin\Docum	ents\Master NMR\2014.10	2014.10.30.mr4_IPV-1_	4_H1_1D.fid\fid		Frequency (MHz)	399.9845
Nucleus	1H	Number of Transients	16	Original Points Count	24038	Points Count	32768
Pulse Sequence	s2pul	Receiver Gain	24.00	SW(cyclical) (Hz)	4807.69	Solvent	cdcl3
Spectrum Offset (Hz)	1947.6067	Spectrum Type	standard	Sweep Width (Hz)	4807.55	Temperature (degree C)	25.900

IPV 1.4 399.984 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe

¹H NMR (400MHz, cdcl₃) δ = 7.02 (d, *J*=8.2 Hz, 2H), 6.70 - 6.61 (m, 2H), 4.57 (td, *J*=6.6, 47.2 Hz, 2H), 3.52 (br s, 2H), 2.91 (td, *J*=6.8, 22.2 Hz, 2H)

840

841

IPV 1.4 100.587 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 6 C's

Acquisition Time (sec)	2.5000				
Comment	IPV 1.4 100.587 MHz C13[i solvent signal	H1] APT_ad in cdcl3 (ref. to	o CDCl3 @ 77.06 ppm), temp	25.9 C -> actual temp = 27	0 C, onenmr probe C & CH2 same, CH & CH3 opposite side of
Date	Oct 30 2014	Date Stamp	Oct 30 2014		
File Name	C:\Users\admin\Documents\	Master NMR\2014.10\2014	.10.30.mr4_IPV-1_4_C13_AP	T_ad.fid∖fid	
Frequency (MHz)	100.5872	Nucleus	13C	Number of Transients	272
Original Points Count	67935	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	38.00	SW(cyclical) (Hz)	27173.91	Solvent	cdcl3
Spectrum Offset (Hz)	11531.7881	Spectrum Type	APT	Sweep Width (Hz)	27173.71

Temperature (degree C) 25.900

¹³C NMR (101MHz, cdcl₃) δ = 145.03, 129.80, 126.80 (br d, *J*=7.3 Hz, 1C), 115.30, 84.50 (br d, *J*=169.0 Hz, 1C), 36.08 (br d, *J*=20.1 Hz, 1C)

842 6.25 ¹H NMR and ¹³C NMR for compound **35**

Jamie_Bailey, IPVI_58 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Multiplets Integrals Sun	23.96 Number of Nu	uclei 23 H's			
Acquisition Time (sec)	5.0000				
Comment	Jamie_Bailey, IPVI_58	499.806 MHz H1 PRESAT	in cdcl3 (ref. to CDCl3 @	7.26 ppm), temp 27.7 C ->	actual temp = 27.0 C, colddual probe
Date	Apr 1 2015	Date Stamp	Apr 1 2015	File Name	F:\Schirrma\2015.04\2015.04.1.u5_IPVI_58_loc11_15.19_H1_1D.fid\fid
Frequency (MHz)	499.8064	Nucleus	1H	Number of Transients	16
Original Points Count	30048	Points Count	32768	Pulse Sequence	PRESAT
Receiver Gain	50.00	SW(cyclical) (Hz)	6009.62	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	2493.3027	Spectrum Type	standard	Sweep Width (Hz)	6009.43
Temperature (degree C)	27 700				

¹H NMR (500MHz, CHLOROFORM-d) δ = 8.84 (br s, 1H), 8.22 (d, *J*=3.7 Hz, 1H), 7.74 (br d, *J*=9.9 Hz, 1H), 7.39 - 7.32 (m, 1H), 7.09 - 6.97 (m, 2H), 6.97 - 6.91 (m, 1H), 6.63 - 6.49 (m, 1H), 5.10 (br d, *J*=7.3 Hz, 1H), 4.71 - 4.52 (m, 1H), 4.21 - 4.12 (m, 1H), 3.98 - 3.90 (m, 1H), 3.79 - 3.72 (m, 1H), 3.20 (dq, *J*=4.2, 7.5 Hz, 1H), 2.97 - 2.91 (m, 1H), 2.61 - 2.53 (m, 1H), 2.52 - 2.42 (m, 1H), 2.42 - 2.28 (m, 1H), 2.28 - 2.04 (m, 3H), 2.00 - 1.91 (m, 1H), 1.85 (br d, *J*=9.2 Hz, 1H)

Jamie_Bailey, IPVI_58 125.691 MHz C13[H1] 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe 36 C/a

Multiplets Integrals Sun	n 0.00 Number of Nu	iclei 36 C's			
Acquisition Time (sec)	2.5000				
Comment	Jamie_Bailey, IPVI_58	125.691 MHz C13[H1] 1D i	n cdcl3 (ref. to CDCl3 @ 7	77.06 ppm), temp 27.7 C ->	actual temp = 27.0 C, colddual probe
Date	Apr 1 2015	Date Stamp	Apr 1 2015	File Name	F:\Schirrma\2015.04\2015.04.1.u5_IPVI_58_loc11_15.20_C13_1D.fid\fid
Frequency (MHz)	125.6909	Nucleus	13C	Number of Transients	576
Original Points Count	82237	Points Count	131072	Pulse Sequence	s2pul
Receiver Gain	30.00	SW(cyclical) (Hz)	32894.74	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	15081.4736	Spectrum Type	standard	Sweep Width (Hz)	32894.49
Temperature (degree C	27.700				

¹³C NMR (126MHz, CHLOROFORM-d) δ = 163.24 (br d, *J*=247.5 Hz, 1C), 163.21 (br d, *J*=247.5 Hz, 1C), 158.93, 158.70, 152.14, 152.07, 144.84, 137.79, 137.23, 137.17, 130.76 (d, *J*=8.5 Hz, 1C), 130.71 (d, *J*=8.5 Hz, 1C), 127.05, 127.01, 121.21 (d, *J*=2.8 Hz, 1C), 121.14 (d, *J*=2.8 Hz, 1C), 114.67 (br d, *J*=3.3 Hz, 1C), 114.50 (br d, *J*=3.5 Hz, 1C), 112.73 (d, *J*=3.3 Hz, 1C), 112.55 (d, *J*=3.8 Hz, 1C), 110.69, 110.65, 65.28, 61.92, 61.42, 48.59, 48.47, 43.70, 41.78, 41.63, 40.50, 40.38, 35.88, 35.75, 22.77, 22.76

845 6.26 ¹H NMR and ¹³C NMR for compound **36**

Multiplets Integrals Sun	a 30.30 Number of	Nuclei 30 H's					
Acquisition Time (sec)	4.9997	Comment	498.118 MHz H1 1D	in cdcl3 (ref. to CDCl3 @ 7	.26 ppm), temp 26.4 C	-> actual temp = 27.0 C, at	utoxdb probe
Date	Apr 8 2015	Date Stamp	Apr 8 2015	File Name	F:\Schirrma\2015.04\	2015.04.08.i5_IPV_1.60X_I	H1_1D.fid\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2935	Spectrum Type	standard	Sweep Width (Hz)	6000.51
Temperature (degree C)	26.400						

¹H NMR (498MHz, CHLOROFORM-d) δ = 8.76 (br s, 1H), 8.14 (br s, 1H), 7.81 - 7.74 (m, 2H), 7.70 - 7.64 (m, 1H), 7.39 - 7.29 (m, 3H), 7.70 - 7.00 (m, 1H), 6.99 - 6.94 (m, 1H), 6.90 - 6.84 (m, 1H), 6.54 (br s, 1H), 5.09 - 5.04 (m, 1H), 4.56 - 4.49 (m, 1H), 4.23 - 4.15 (m, 1H), 3.87 (br d, *J*=8.6 Hz, 1H), 3.73 - 3.64 (m, 1H), 3.39 - 3.24 (m, 1H), 2.87 - 2.79 (m, 1H), 2.74 (br s, 1H), 2.62 - 2.50 (m, 2H), 2.44 (d, *J*=4.7 Hz, 3H), 2.39 - 2.07 (m, 5H)

Jamie_Bailey, IPV1_60A 125.691 MHz C13[H1] 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

Multiplets Integrals Sum	0.00 Number of Nuc	:lei 20 C's			
Acquisition Time (sec)	2.5000				
Comment	Jamie_Bailey, IPV1_60A	125.691 MHz C13[H1] 1D	in cdcl3 (ref. to CDCl3 @	77.06 ppm), temp 27.7 C -	-> actual temp = 27.0 C, colddual probe
Date	Apr 1 2015	Date Stamp	Apr 1 2015		
File Name	F:\Schirrma\2015.04\2015	5.04.1.u5_IPV1_60A_loc12	_15.52_C13_1D.fid\fid	Frequency (MHz)	125.6909
Nucleus	13C	Number of Transients	576	Original Points Count	82237
Points Count	131072	Pulse Sequence	s2pul	Receiver Gain	30.00
SW(cyclical) (Hz)	32894.74	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	15081.4736
Spectrum Type	standard	Sweep Width (Hz)	32894.49	Temperature (degree C)	27.700

¹³C NMR (126MHz, CHLOROFORM-d) δ = 163.20 (br d, *J*=247.5 Hz, 1C), 163.23 (br d, *J*=247.5 Hz, 1C), 144.78 (br d, *J*=6.0 Hz, 1C), 144.66 (br d, *J*=6.0 Hz, 1C), 131.01 (d, *J*=8.0 Hz, 1C), 130.76 (d, *J*=8.0 Hz, 1C), 129.98, 129.93, 127.92, 127.77, 121.27 (br d, *J*=2.5 Hz, 1C), 121.11 (d, *J*=2.5 Hz, 1C), 114.64 (br d, *J*=21.3 Hz, 1C), 114.60 (br d, *J*=21.1 Hz, 1C), 112.57 (br d, *J*=22.1 Hz, 1C), 112.51 (br d, *J*=22.1 Hz, 1C), 37.75, 35.89, 22.77, 21.69

849 6.27 ¹H NMR and ¹³C NMR for compound **38**

Multiplets Integrals Sur	n 29.85 Number of	Nuclei 29 H's				
Acquisition Time (sec)	4.9997	Comment	MV 1.10 498.118 MH	Iz H1 1D in cdcl3 (ref. to C	DCI3 @ 7.26 ppm), ten	np 26.4 C -> actual temp = 27.0 C, autoxdb probe
Date	Mar 6 2015	Date Stamp	Mar 6 2015	File Name	F:\Schirrma\2015.03\	2015.03.06.i5_MV_1.10_H1_1D.fid\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count 30001
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz) 6000.60
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2935	Spectrum Type	standard	Sweep Width (Hz) 6000.51
Temperature (degree C	26.400					

MV 1.10 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, CHLOROFORM-d) δ = 7.68 (d, *J*=7.0 Hz, 4H), 7.49 - 7.38 (m, 6H), 6.99 (d, *J*=8.3 Hz, 2H), 6.64 (d, *J*=7.8 Hz, 2H), 3.85 (t, *J*=7.1 Hz, 2H), 3.57 (br s, 2H), 2.82 (t, *J*=7.1 Hz, 2H), 1.10 (s, 9H)

850

851

MV 1.10 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 12 C's

Acquisition Time (sec)	1.9958					
Comment	VIV 1.10 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal					
Date	Mar 6 2015	Date Stamp	Mar 6 2015	File Name	F:\Schirrma\2015.03\2015.03.06.i5_MV_1.10_C13_APT_ad.fid\fid	
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	124	
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad	
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d	
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38	

Temperature (degree C) 26.400

¹³C NMR (125MHz, CHLOROFORM-d) δ = 144.56, 135.64, 134.00, 130.03, 129.54, 129.09, 127.62, 115.13, 65.62, 38.52, 26.92, 19.22 $\frac{26}{6}$ |2015 M06(s)

852 6.28 ¹H NMR and ¹³C NMR for compound **39**

Multiplets Integrals Sun	40.77 Number of	Nuclei 39 H's					
Acquisition Time (sec)	4.9997	Comment	IPV 1.59 498.118 MH	Iz H1 1D in cdcl3 (ref. to C	DCI3 @ 7.26 ppm), ten	np 26.4 C -> actual temp = 2	27.0 C, autoxdb probe
Date	Apr 1 2015	Date Stamp	Apr 1 2015	File Name	F:\Schirrma\2015.04\2	015.04.01.i5_IPV_1.59_H1	_1D.fid\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2935	Spectrum Type	standard	Sweep Width (Hz)	6000.51
Temperature (degree C)	26.400						
1							

¹H NMR (498MHz, CHLOROFORM-d) δ = 10.64 - 10.46 (m, 1H), 8.31 (s, 1H), 7.71 (br d, *J*=10.0 Hz, 1H), 7.66 - 7.57 (m, 4H), 7.25 - 7.23 (m, 1H), 7.53 - 7.13 (m, 10H), 7.04 - 6.87 (m, 3H), 6.60 - 6.49 (m, 1H), 5.11 (br d, *J*=7.6 Hz, 1H), 4.00 (br t, *J*=7.0 Hz, 1H), 3.90 - 3.76 (m, 3H), 2.87 (t, *J*=68 Hz, 1H), 2.63 - 2.51 (m, 1H), 2.25 - 2.05 (m, 3H), 1.07 (s, 7H)

853

854

IPV 1.59 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal Multiplets Integrals Sum 0.00 Number of Nuclei 30 C's

Acquisition Time (sec)	1.9958						
Comment	IPV 1.59 125.266 MHz C1 solvent signal	V 1.59 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of obvert signal					
Date	Apr 1 2015	Date Stamp	Apr 1 2015	File Name	F:\Schirrma\2015.04\2015.04.01.i5_IPV_1.59_C13_APT_ad.fid\fid		
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	200		
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad		
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d		
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38		
Temperature (degree C)	26.400						

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.24 (d, *J*=247.5 Hz, 1C), 157.06, 152.10, 144.84 (br s, 1C), 144.80 (br s, 1C), 136.09, 135.58, 135.51, 135.18, 133.81, 130.73, 129.80, 129.57, 127.63, 127.09, 122.62, 121.16, 120.29, 114.62 (br d, *J*=21.2 Hz, 1C), 112.60 (br d, *J*=22.2 Hz, 1C), 110.90, 65.17, 62.05, 48.65, 38.78, 35.88, 26.87, 26.80, 22.75, 19.20

855 6.29 ¹H NMR and ¹³C NMR for compound **40**

Multiplets Integrals Sum 23.38 Number of Nuclei 26 H's							
Acquisition Time (sec)	4.9997	Comment	IPV 1.63 498.118 MH	Hz H1 1D in cdcl3 (ref. to C	DCI3 @ 7.26 ppm), ten	np 26.4 C -> actual temp = :	27.0 C, autoxdb probe
Date	Apr 8 2015	Date Stamp	Apr 8 2015	File Name	F:\Schirrma\2015.04\2	015.04.08.i5_IPV_1.63_H1	_1D.fid\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2935	Spectrum Type	standard	Sweep Width (Hz)	6000.51

IPV 1.63 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

1H), 7.21 (d, *J*=8.4 Hz, 2H), 7.03 (d, *J*=7.7 Hz, 1H), 6.99 (dt, *J*=2.2, 8.4 Hz, 1H), 6.96 - 6.91 (m, 1H), 6.54 (br d, *J*=9.4 Hz, 1H), 5.11 (br d, *J*=7.8 Hz, 1H), 4.05 - 3.95 (m, 1H), 3.89 (t, *J*=6.5 Hz, 2H), 3.84 - 3.75 (m, 1H), 2.87 (t, *J*=6.5 Hz, 2H), 2.65 - 2.52 (m, 1H), 2.27 - 2.07 (m, 3H), 1.98 - 1.73 (m, 1H) $\frac{2}{2}$ |IPV1.63

856

IPV 1.63 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal

Acquisition Time (sec)	1.9958				
Comment	IPV 1.63 125.266 MHz C1 solvent signal	3[H1] APT_ad in cdcl3 (ref	. to CDCI3 @ 77.06 ppm), te	mp 26.4 C -> actual temp =	= 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of
Date	Apr 8 2015	Date Stamp	Apr 8 2015	File Name	F:\Schirrma\2015.04\2015.04.08.i5_IPV_1.63_C13_APT_ad.fid\fid
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	280
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38
Temperature (degree C	26 400	-			

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.25 (d, *J*=247.5 Hz, 1C), 157.09, 152.10, 144.79, 137.97, 136.31, 134.55, 130.70 (d, *J*=8.0 Hz, 1C), 129.59, 127.01, 122.49, 121.16, 121.14, 120.53, 114.63 (d, *J*=20.6 Hz, 1C), 112.65 (br d, *J*=21.9 Hz, 1C), 110.96, 63.62, 62.11, 48.66, 38.72, 35.90, 22.76

Temperature (degree C) 26.400 ¹H NMR (498MHz, CHLOROFORM-d) δ = 10.56 (br s, 3H), 8.28 (s, 1H), 7.68 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.68 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.68 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.68 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.68 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.68 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=6.0, 7.8 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.32 (dt, J=9.7 Hz, 1H), 7.58 (br d, J=9.7 Hz, 1H), 7.57 - 7.39 (m, 2H), 7.58 (br d, J=9.7 Hz, 1H), 7.58 (br d, J

858 6.30 ¹H NMR and ¹³C NMR for compound **41**

Multiplets Integrals Sum 31.48 Number of Nuclei 30 H's							
Acquisition Time (sec)	4.9997	Comment	IPV 1.64 498.118 MH	Hz H1 1D in cdcl3 (ref. to C	DCI3 @ 7.26 ppm), ten	np 26.4 C -> actual temp = 2	27.0 C, autoxdb probe
Date	Apr 14 2015	Date Stamp	Apr 14 2015	File Name	F:\Schirrma\2015.04\2	015.04.14.i5_IPV_1.64_H1	_1D.fid\fid
Frequency (MHz)	498.1178	Nucleus	1H	Number of Transients	16	Original Points Count	30001
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	32.00	SW(cyclical) (Hz)	6000.60
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2388.2935	Spectrum Type	standard	Sweep Width (Hz)	6000.51
Temperature (degree C)	26.400						

IPV 1.64 498.118 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe

¹H NMR (498MHz, CHLOROFORM-d) δ = 10.59 (br s, 1H), 8.32 (s, 1H), 7.77 - 7.70 (m, 3H), 7.53 - 7.41 (m, 2H), 7.36 - 7.29 (m, 3H), 7.13 (d, *J*=8.3 Hz, 2H), 7.05 - 6.96 (m, 2H), 6.95 - 6.90 (m, 1H), 6.61 - 6.54 (m, 1H), 5.16 - 5.09 (m, 1H), 4.23 (t, *J*=7.0 Hz, 2H), 4.06 - 3.99 (m, 1H), 3.87 - 3.79 (m, 1H), 2.97 (t, *J*=6.9 Hz, 2H), 2.63 - 2.53 (m, 1H), 2.45 (s, 3H), 2.25 - 2.13 (m, 3H)

860

 IPv 1.64x
 125.266
 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe
 C & CH2 same, CH & CH3 opposite side of solvent signal

 Multiplets Integrals Sum 0.00
 Number of Nuclei
 27 C's

Acquisition Time (sec)	1.9958							
Comment	IPv 1.64x 125.266 MHz C1 solvent signal	2v 1.64x 125.266 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 26.4 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of olvent signal						
Date	May 29 2015	Date Stamp	May 29 2015	File Name	F:\Schirrma\2015.05\2015.05.29.i5_IPV_1.64x_C13_APT_ad.fid\fid			
Frequency (MHz)	125.2656	Nucleus	13C	Number of Transients	256			
Original Points Count	67510	Points Count	131072	Pulse Sequence	APT_ad			
Receiver Gain	30.00	SW(cyclical) (Hz)	33826.64	Solvent	CHLOROFORM-d			
Spectrum Offset (Hz)	14370.3086	Spectrum Type	APT	Sweep Width (Hz)	33826.38			
Temperature (degree C)	26.400							

¹³C NMR (125MHz, CHLOROFORM-d) δ = 163.23 (d, *J*=247.8 Hz, 1C), 157.11, 156.02, 152.14, 144.78, 136.81, 132.91, 132.09, 130.73 (br d, *J*=8.3 Hz, 1C), 129.83, 129.52, 127.82, 127.14, 122.48, 121.16 (br d, *J*=2.8 Hz, 1C), 120.57 (br s, 1C), 120.54, 114.64 (br d, *J*=20.9 Hz, 1C), 112.60 (d, *J*=22.2 Hz, 1C), 110.98, 70.64, 62.11, 48.69, 35.89, 34.84, 22.78, 21.64 $\frac{1}{6}$ (2015)

861	7. CRYSTALLOGRAPHIC DATA FOR COMPOUND 22						
862	STRUCTURE REPORT						
863							
864	XCL Code:	UNI1504	Date: 22 May 2015				
865 866	Compound:	N-(2,4-difluoro-3-methoxybenzyl)-6-{2-(3-fluorophenyl)pyrrolidin-1- yl}imidazo[1,2- <i>b</i>]pyridazine-3-carboxamide•1.4H ₂ O					
867	Formula:	C ₂₅ H _{23.8} F ₃ N ₅ O _{3.4} (C ₂₅ H ₂₂ F ₃ N ₅ O ₂ •1.4H ₂	0)				
868	Clients:	J. Bailey and Prof. R. Schirrmacher, Depart	ment of Oncology				
869	Crystallographer:	R. McDonald					
870							
871							
872							
873							

874		Figure Legends
875		
876	Figure 1.	Perspective view of the <i>N</i> -(2,4-difluoro-3-methoxybenzyl)-6-{2-(3-fluorophenyl)-
877		pyrrolidin-1-yl}imidazo[1,2-b]pyridazine-3-carboxamide molecule showing the atom
878		labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the
879		30% probability level. Hydrogen atoms are shown with arbitrarily small thermal
880		parameters.
881		
882	Figure 2.	Alternate view of the molecule.

List of Tables

- Table 1.
 Crystallographic Experimental Details
- Table 2.
 Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.Selected Interatomic Angles
- Table 5.
 Hydrogen-Bonded Interactions
- Table 6.Torsional Angles
- Table 7.
 Anisotropic Displacement Parameters
- Table 8.
 Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

 Table 1. Crystallographic Experimental Details

A. Crystal Data

formula	C ₂₅ H _{23.8} F ₃ N ₅ O _{3.4}
formula weight	505.69
crystal dimensions (mm)	$0.29 \times 0.24 \times 0.02$
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
unit cell parameters ^a	
a (Å)	13.8619 (3)
b (Å)	10.1495 (2)
<i>c</i> (Å)	17.3464 (4)
eta (deg)	104.9414 (13)
V (Å ³)	2357.98 (9)
Ζ	4
$ ho_{ m calcd}$ (g cm ⁻³)	1.424
μ (mm ⁻¹)	0.959

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	Cu K $lpha$ (1.54178) (microfocus source)
temperature (°C)	-100
scan type	ω and ϕ scans (1.0°) (5 s exposures)
data collection 2 $ heta$ limit (deg)	145.48
total data collected	14514 (-14 $\leq h \leq$ 16, -12 $\leq k \leq$ 12, -21 $\leq l \leq$ 21)
independent reflections	4601 (<i>R</i> _{int} = 0.0576)
number of observed reflections (NO)	3236 $[F_0^2 \ge 2\sigma(F_0^2)]$

structure solution method	direct methods/dual space (SHELXD ^c)
refinement method	full-matrix least-squares on F ² (SHELXL-2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	1.0000-0.6593
data/restraints/parameters	4601 / 12 ^e / 402
goodness-of-fit (S) ^f [all data]	1.054
final R indices ^g	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0726
wR ₂ [all data]	0.2321
largest difference peak and hole	0.928 and –0.357 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 5514 reflections with 6.60° < 2θ < 145.20°.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

(continued)

^cSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

^dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.

- ^{*e*}(a) The C16–C20A and C16–C20B distances were constrained to be equal (within 0.03 Å) during refinement. (b) The carbon atoms of the minor (40%) conformer of the disordered 3-fluorophenyl group were refined as an idealized regular hexagon, with C–C bond distances of 1.390 Å and C–C–C bond angles of 120.0°. (c) The O–H and H…H distances within the disordered solvent water molecules were constrained to be 0.840(3) Å and 1.370(3) Å during refinement. (c) The H1SB…N1(at 1–x, \overline{y} , 1–z) distance was constrained to be 2.22(2) Å during refinement. (e) The H1SD…N1(at 1–x, \overline{y} , 1–z) distance was constrained to be 1.97(2) Å during refinement.
- ${}^{f}S = [\Sigma w(F_0{}^2 F_c{}^2)^2/(n p)]^{1/2} (n = \text{number of data}; p = \text{number of parameters varied}; w = [\sigma^2(F_0{}^2) + (0.1241P)^2 + 1.7884P]^{-1} \text{ where } P = [Max(F_0{}^2, 0) + 2F_c{}^2]/3).$

 $g_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; w_R2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

(a) atoms of N-(2,4-difluoro-3-methoxybenzyl)-6-{2-(3-fluorophenyl)pyrrolidin-1-yl}imidazo[1,2b]pyridazine-3-carboxamide

Atom	X	у	Ζ	U _{eq} , Å ²
F1	0.29978(16)	0.4603(2)	0.05861(12)	0.0561(6)*
F2	0.05424(19)	0.1307(3)	0.01556(16)	0.0846(9)*
F3A ^a	-0.0203(4)	0.3952(6)	0.2866(3)	0.1031(18)*
F3B ^b	0.0855(6)	0.5225(13)	0.1295(4)	0.153(5)*
01	0.47929(19)	0.1999(2)	0.30617(13)	0.0460(6)*
O2	0.1364(2)	0.3422(3)	-0.04391(17)	0.0733(9)*
N1	0.50741(19)	0.2115(2)	0.55712(16)	0.0394(6)*
N2	0.41956(18)	0.3635(2)	0.47520(13)	0.0300(5)*
N3	0.35888(18)	0.4688(2)	0.44806(14)	0.0308(5)*
N4	0.26532(19)	0.6351(2)	0.47788(14)	0.0338(6)*
N5	0.3869(2)	0.3850(3)	0.30329(15)	0.0375(6)*
C1	0.3284(2)	0.5324(3)	0.50423(16)	0.0307(6)*
C2	0.3590(2)	0.4991(3)	0.58702(17)	0.0357(6)*
C3	0.4208(2)	0.3947(3)	0.61077(18)	0.0370(7)*
C4	0.4515(2)	0.3211(3)	0.55273(17)	0.0329(6)*
C5	0.5105(2)	0.1855(3)	0.48105(19)	0.0378(7)*
C6	0.4569(2)	0.2773(3)	0.42802(18)	0.0340(6)*
C7	0.4415(2)	0.2850(3)	0.34104(18)	0.0355(6)*
C8	0.3713(3)	0.4071(3)	0.21827(17)	0.0396(7)*
C9	0.2846(2)	0.3297(3)	0.16709(17)	0.0358(7)*
C10	0.2534(3)	0.3601(3)	0.08689(19)	0.0424(7)*
C11	0.1749(3)	0.2973(4)	0.0338(2)	0.0538(9)*
C12	0.1301(3)	0.1949(4)	0.0657(2)	0.0572(10)*
C13	0.1572(3)	0.1618(4)	0.1439(2)	0.0534(9)*
C14	0.2361(3)	0.2298(3)	0.1952(2)	0.0454(8)*
C15	0.1970(4)	0.3200(4)	-0.0949(3)	0.0697(12)*
C16	0.2482(2)	0.6875(3)	0.39732(17)	0.0378(7)*
C17	0.2103(3)	0.8272(3)	0.4074(2)	0.0481(8)*
C18	0.1524(3)	0.8091(3)	0.4702(2)	0.0471(8)*
C19	0.2204(3)	0.7165(3)	0.53000(19)	0.0432(8)*
C20A <i>a</i>	0.1767(7)	0.6164(11)	0.3288(5)	0.0392(19)*
C21A ^{<i>a</i>}	0.1084(6)	0.5319(8)	0.3415(4)	0.0421(17)*
C22A ^a	0.0476(5)	0.4782(7)	0.2770(5)	0.0538(16)*
C23A ^a	0.0500(6)	0.5044(8)	0.1989(5)	0.0491(17)*
C24A ^a	0.1185(6)	0.5977(7)	0.1880(4)	0.0573(18)*
$C25A^a$	0.1841(6)	0.6549(7)	0.2520(4)	0.0442(15)*

C20B ^b	0.1701(7)	0.5890(9)	0.3431(5)	0.064(9)*
C21B ^b	0.1614(6)	0.5934(8)	0.2615(5)	0.051(2)*
Table 2. Atom	nic Coordinates a	and Displacemer	nt Parameters (c	ontinued)
Atom	x	У	Z	U _{eq} , Å ²
$C22B^b$	0.0933(6)	0.5121(10)	0.2102(4)	0.070(5)*
C23B ^b	0.0340(5)	0.4263(9)	0.2404(5)	0.071(3)*
$C24B^b$	0.0427(5)	0.4219(7)	0.3220(5)	0.066(3)*
$C25B^b$	0.1108(7)	0.5032(9)	0.3734(4)	0.045(3)*
H5N	0.367(3)	0.439(4)	0.331(2)	0.052(11)
(b) solvent wa	ter atoms			
Atom	X	у	Z	U _{eq} , Å ²
O1SA ^a	0.3735(4)	-0.0600(5)	0.2970(3)	0.0588(13)
$H1SA^{a,c}$	0.413(4)	0.003(4)	0.297(5)	0.088
$H1SB^{a,c}$	0.403(4)	-0.119(3)	0.329(2)	0.088
$O1SB^b$	0.3829(5)	-0.0348(7)	0.3282(4)	0.0464(15)
$H1SC^{b,c}$	0.421(5)	0.025(6)	0.320(5)	0.070
$H1SD^{b,c}$	0.414(5)	-0.081(5)	0.367(3)	0.070
$O2SB^b$	0.3413(6)	0.7538(9)	0.2265(5)	0.077(2)
$H2SA^{b,c}$	0.356(6)	0.824(5)	0.252(5)	0.115
$H2SB^{b,c}$	0.394(3)	0.717(8)	0.222(6)	0.115

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$. *a*Refined with an occupancy factor of 0.6. *b*Refined with an occupancy factor of 0.4. *c*Refined with an isotropic displacement parameter 150% of that of the attached oxygen atom.

Atom1	Atom2	Distance	Atom1	Atom2	Distance
F1	C10	1.361(4)	C9	C10	1.381(4)
F2	C12	1.347(4)	C9	C14	1.374(4)
F3A	C22A	1.305(9)	C10	C11	1.386(5)
F3B	C22B	1.380(10)	C11	C12	1.396(6)
01	C7	1.245(4)	C12	C13	1.353(5)
O2	C11	1.393(4)	C13	C14	1.402(5)
O2	C15	1.388(5)	C16	C17	1.538(4)
N1	C4	1.346(4)	C16	C20A	1.520(7) ^a
N1	C5	1.357(4)	C16	C20B	1.591(6) <i>a</i>
N2	N3	1.366(3)	C17	C18	1.521(5)
N2	C4	1.372(3)	C18	C19	1.532(5)
N2	C6	1.386(4)	C20A	C21A	1.337(13)
N3	C1	1.326(4)	C20A	C25A	1.416(12)
N4	C1	1.362(4)	C21A	C22A	1.331(10)
N4	C16	1.456(4)	C22A	C23A	1.389(11)
N4	C19	1.475(4)	C23A	C24A	1.387(10)
N5	C7	1.333(4)	C24A	C25A	1.370(10)
N5	C8	1.452(4)	C20B	C21B	1.390 <i>a</i>
C1	C2	1.429(4)	C20B	C25B	1.390 <i>a</i>
C2	C3	1.358(4)	C21B	C22B	1.390 <i>a</i>
C3	C4	1.405(4)	C22B	C23B	1.390 <i>a</i>
C5	C6	1.384(4)	C23B	C24B	1.390 <i>a</i>
C6	C7	1.470(4)	C24B	C25B	1.390 <i>a</i>
C8	C9	1.516(4)			

Table 3. Selected Interatomic Distances (Å)

 a Distances restrained during refinement. See footnote e of Table 1 for details.

Table 4.	Selected	Interatomic	Angles	(deg)	
----------	----------	-------------	--------	-------	--

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C11	O2	C15	114.9(3)	C10	C11	C12	115.6(3)
C4	N1	C5	105.5(2)	F2	C12	C11	117.2(4)
N3	N2	C4	126.7(2)	F2	C12	C13	119.7(4)
N3	N2	C6	125.5(2)	C11	C12	C13	123.0(3)
C4	N2	C6	107.8(2)	C12	C13	C14	119.0(4)
N2	N3	C1	114.4(2)	C9	C14	C13	120.7(3)
C1	N4	C16	122.2(2)	N4	C16	C17	101.7(2)
C1	N4	C19	124.0(2)	N4	C16	C20A	119.3(6) ^a
C16	N4	C19	113.2(2)	N4	C16	C20B	$104.8(4)^{a}$
C7	N5	C8	122.2(3)	C17	C16	C20A	$110.7(5)^{a}$
N3	C1	N4	115.2(2)	C17	C16	C20B	116.5(5) <i>a</i>
N3	C1	C2	123.7(3)	C16	C17	C18	103.2(3)
N4	C1	C2	121.1(3)	C17	C18	C19	102.3(3)
C1	C2	C3	119.3(3)	N4	C19	C18	102.2(2)
C2	C3	C4	118.8(3)	C16	C20A	C21A	121.5(9) <i>a</i>
N1	C4	N2	110.5(3)	C16	C20A	C25A	114.4(9) ^a
N1	C4	C3	132.5(3)	C21A	C20A	C25A	123.9(6)
N2	C4	C3	117.0(3)	C20A	C21A	C22A	116.5(7)
N1	C5	C6	111.7(3)	F3A	C22A	C21A	118.6(7)
N2	C6	C5	104.5(3)	F3A	C22A	C23A	116.6(7)
N2	C6	C7	126.5(3)	C21A	C22A	C23A	124.9(7)
C5	C6	C7	129.0(3)	C22A	C23A	C24A	116.9(7)
01	C7	N5	123.1(3)	C23A	C24A	C25A	120.9(6)
01	C7	C6	119.6(3)	C20A	C25A	C24A	116.8(7)
N5	C7	C6	117.3(3)	C16	C20B	C21B	$116.7(5)^a$
N5	C8	C9	113.8(3)	C16	C20B	C25B	$123.3(5)^a$
C8	C9	C10	118.0(3)	C21B	C20B	C25B	120.0 <i>a</i>
C8	C9	C14	124.1(3)	C20B	C21B	C22B	120.0 <i>a</i>
C10	C9	C14	117.9(3)	F3B	C22B	C21B	117.9(8) ^a
F1	C10	C9	118.4(3)	F3B	C22B	C23B	$122.1(8)^a$
F1	C10	C11	117.9(3)	C21B	C22B	C23B	120.0 <i>a</i>
C9	C10	C11	123.7(3)	C22B	C23B	C24B	120.0 <i>a</i>
O2	C11	C10	122.1(4)	C23B	C24B	C25B	120.0 <i>a</i>
O2	C11	C12	121.9(4)	C20B	C25B	C24B	120.0 <i>a</i>

^aAngle includes distance(s) restrained during refinement. See footnote e of Table 1 for details.

Table 5. Hydrogen-Bonded Interactions

D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	∠D–H…A (deg)
N5–H5N…N3	0.82(4)	2.09(4)	2.772(4)	141(4)
O1SA-H1SA…O1	0.840(3)	2.19(2)	3.002(6)	163(7)
O1SA-H1SB…N1 ^a	0.841(3)	2.256(16)	3.056(6)	159(4)
O1SB-H1SC…O1	0.840(3)	1.99(3)	2.805(7)	163(8)
O1SB-H1SD…N1 ^a	0.841(3)	1.985(14)	2.816(7)	169(7)
O2SB–H2SA…O1SB ^b	0.840(3)	1.92(2)	2.743(11)	168(10)
O2SB–H2SB…O1 ^c	0.840(3)	1.95(4)	2.745(9)	157(10)

 $a_{At 1-x, \overline{y}}$, 1–z.

^bAt x, 1+y, z.

^cAt 1–x, ¹/2+y, ¹/2–z.

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C15	O2	C11	C10	72.8(5)	N2	C6	C7	01	-179.6(3)
C15	O2	C11	C12	-114.1(5)	N2	C6	C7	N5	0.5(5)
C5	N1	C4	N2	0.2(3)	C5	C6	C7	01	0.5(5)
C5	N1	C4	C3	179.2(3)	C5	C6	C7	N5	-179.3(3)
C4	N1	C5	C6	-0.2(3)	N5	C8	C9	C10	169.5(3)
C4	N2	N3	C1	-1.1(4)	N5	C8	C9	C14	-11.6(4)
C6	N2	N3	C1	176.4(3)	C8	C9	C10	F1	-2.0(4)
N3	N2	C4	N1	177.7(2)	C8	C9	C10	C11	-179.7(3)
N3	N2	C4	C3	-1.5(4)	C14	C9	C10	F1	179.0(3)
C6	N2	C4	N1	-0.1(3)	C14	C9	C10	C11	1.3(5)
C6	N2	C4	C3	-179.3(3)	C8	C9	C14	C13	-179.3(3)
N3	N2	C6	C5	-177.9(2)	C10	C9	C14	C13	-0.4(5)
N3	N2	C6	C7	2.3(4)	F1	C10	C11	O2	-6.8(5)
C4	N2	C6	C5	0.0(3)	F1	C10	C11	C12	179.8(3)
C4	N2	C6	C7	-179.8(3)	C9	C10	C11	O2	170.9(3)
N2	N3	C1	N4	-178.1(2)	C9	C10	C11	C12	-2.6(5)
N2	N3	C1	C2	2.7(4)	O2	C11	C12	F2	7.3(6)
C16	N4	C1	N3	-11.5(4)	O2	C11	C12	C13	-170.4(4)
C16	N4	C1	C2	167.7(3)	C10	C11	C12	F2	-179.2(3)
C19	N4	C1	N3	178.2(3)	C10	C11	C12	C13	3.1(6)
C19	N4	C1	C2	-2.5(4)	F2	C12	C13	C14	-179.9(3)
C1	N4	C16	C17	-158.1(3)	C11	C12	C13	C14	-2.3(6)
C1	N4	C16	C20A	79.9(5) ^a	C12	C13	C14	C9	0.8(6)
C1	N4	C16	C20B	80.2(5) <i>a</i>	N4	C16	C17	C18	-33.8(3)
C19	N4	C16	C17	13.1(3)	C20A	C16	C17	C18	94.0(6) ^a
C19	N4	C16	C20A	$-108.9(5)^{a}$	C20B	C16	C17	C18	79.5(5) ^a
C19	N4	C16	C20B	$-108.6(5)^{a}$	N4	C16	C20A	C21A	19.5(10) ^a
C1	N4	C19	C18	-176.4(3)	N4	C16	C20A	C25A	$-165.0(5)^a$
C16	N4	C19	C18	12.5(4)	C17	C16	C20A	C21A	$-97.9(9)^{a}$
C8	N5	C7	01	-3.4(5)	C17	C16	C20A	C25A	$77.5(7)^a$
C8	N5	C7	C6	176.5(3)	N4	C16	C20B	C21B	$-162.6(4)^a$
C7	N5	C8	C9	85.7(4)	N4	C16	C20B	C25B	18.7(6) <i>a</i>
N3	C1	C2	C3	-1.8(4)	C17	C16	C20B	C21B	85.9(6) ^a
N4	C1	C2	C3	179.0(3)	C17	C16	C20B	C25B	$-92.8(6)^{a}$
C1	C2	C3	C4	-1.0(4)	C16	C17	C18	C19	42.0(3)
C2	C3	C4	N1	-176.5(3)	C17	C18	C19	N4	-33.1(3)
C2	C3	C4	N2	2.5(4)	C16	C20A	C21A	C22A	178.0(8) ^a
N1	C5	C6	N2	0.1(3)	C25A	C20A	C21A	C22A	3.0(12)
N1	C5	C6	C7	180.0(3)	C16	C20A	C25A	C24A	-177.4(7) ^a

C21A C20A C25A C24A -2.1(12) C20A C21A C22A F3A -179.9(8)

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C20A	C21A	C22A	C23A	-0.5(12)	C21B	C20B	C25B	C24B	0.0 <i>a</i>
F3A	C22A	C23A	C24A	176.7(7)	C20B	C21B	C22B	F3B	178.4(8) <i>a</i>
C21A	C22A	C23A	C24A	-2.8(12)	C20B	C21B	C22B	C23B	0.0 <i>a</i>
C22A	C23A	C24A	C25A	3.7(11)	F3B	C22B	C23B	C24B	$-178.3(9)^a$
C23A	C24A	C25A	C20A	-1.4(11)	C21B	C22B	C23B	C24B	0.0 <i>a</i>
C16	C20B	C21B	C22B	-178.7(8) ^a	C22B	C23B	C24B	C25B	0.0 <i>a</i>
C25B	C20B	C21B	C22B	0.0 <i>a</i>	C23B	C24B	C25B	C20B	0.0 <i>a</i>
C16	C20B	C25B	C24B	178.7(9) ^a					

^{*a*}Angle includes distance(s) restrained during refinement. See footnote *e* of Table 1 for details.

2	Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
3	F1	0.0632(14)	0.0569(12)	0.0442(11)	0.0170(9)	0.0067(9)	-0.0047(10)
4	F2	0.0550(16)	0.119(2)	0.0765(17)	-0.0365(16)	0.0115(12)	-0.0316(15)
5	F3A	0.097(4)	0.101(4)	0.101(4)	-0.005(3)	0.007(3)	-0.040(3)
6	F3B	0.088(5)	0.313(14)	0.035(3)	-0.064(5)	-0.026(3)	0.099(7)
7	01	0.0567(15)	0.0370(11)	0.0475(13)	0.0001(10)	0.0190(11)	0.0073(10)
8	O2	0.070(2)	0.092(2)	0.0543(17)	-0.0022(15)	0.0086(14)	0.0196(17)
9	N1	0.0335(14)	0.0349(13)	0.0450(15)	0.0107(11)	0.0014(11)	0.0003(10)
10	N2	0.0299(13)	0.0251(11)	0.0315(12)	0.0042(9)	0.0016(9)	-0.0020(9)
11	N3	0.0317(13)	0.0249(11)	0.0321(12)	0.0032(9)	0.0018(9)	-0.0001(9)
12	N4	0.0398(15)	0.0296(12)	0.0293(12)	0.0002(9)	0.0041(10)	0.0019(10)
13	N5	0.0449(16)	0.0343(13)	0.0307(13)	0.0006(10)	0.0053(11)	0.0038(11)
14	C1	0.0310(15)	0.0259(12)	0.0319(14)	0.0008(10)	0.0021(11)	-0.0052(10)
15	C2	0.0412(17)	0.0332(14)	0.0316(15)	0.0002(11)	0.0072(12)	-0.0050(12)
16	C3	0.0397(18)	0.0348(15)	0.0321(14)	0.0098(11)	0.0011(12)	-0.0086(12)
17	C4	0.0299(15)	0.0313(13)	0.0329(15)	0.0074(11)	0.0000(11)	-0.0049(11)
18	C5	0.0333(17)	0.0326(15)	0.0449(17)	0.0075(12)	0.0055(13)	0.0009(12)
19	C6	0.0324(16)	0.0298(14)	0.0379(16)	0.0017(11)	0.0056(12)	-0.0010(11)
20	C7	0.0363(17)	0.0309(14)	0.0379(16)	0.0000(11)	0.0068(12)	-0.0021(12)
21	C8	0.0480(19)	0.0358(15)	0.0340(15)	0.0031(12)	0.0091(13)	-0.0011(13)
22	C9	0.0401(18)	0.0337(14)	0.0335(15)	-0.0008(11)	0.0096(12)	0.0048(12)
23	C10	0.0436(19)	0.0441(17)	0.0393(17)	0.0001(13)	0.0101(13)	0.0036(14)
24	C11	0.048(2)	0.071(2)	0.0382(18)	-0.0054(16)	0.0033(15)	0.0031(18)
25	C12	0.041(2)	0.074(3)	0.055(2)	-0.0229(19)	0.0094(16)	-0.0089(18)
26	C13	0.045(2)	0.060(2)	0.059(2)	-0.0116(17)	0.0220(17)	-0.0129(17)
27	C14	0.050(2)	0.0471(18)	0.0419(17)	-0.0018(14)	0.0169(15)	-0.0041(15)
28	C15	0.084(3)	0.060(2)	0.066(3)	-0.003(2)	0.021(2)	0.018(2)
29	C16	0.0384(17)	0.0407(16)	0.0327(15)	0.0079(12)	0.0059(12)	0.0086(13)
30	C17	0.051(2)	0.0408(17)	0.051(2)	0.0117(14)	0.0112(16)	0.0149(15)
31	C18	0.047(2)	0.0382(16)	0.056(2)	0.0007(14)	0.0123(15)	0.0087(14)
32	C19	0.054(2)	0.0374(16)	0.0391(17)	-0.0011(13)	0.0139(14)	0.0069(14)
33	C20A	0.037(5)	0.043(3)	0.030(4)	-0.005(4)	-0.004(3)	0.013(3)
34	C21A	0.030(3)	0.055(4)	0.035(4)	-0.002(3)	-0.004(3)	0.004(3)
35	C22A	0.042(4)	0.062(4)	0.048(4)	-0.006(3)	-0.004(3)	-0.006(3)
36	C23A	0.036(5)	0.058(4)	0.042(4)	-0.012(3)	-0.012(3)	0.000(3)
37	C24A	0.065(5)	0.064(4)	0.040(3)	-0.002(3)	0.007(3)	0.005(3)
38	C25A	0.050(4)	0.046(4)	0.036(3)	0.011(3)	0.009(2)	0.001(3)
39	C20B	0.055(12)	0.111(19)	0.016(5)	-0.006(7)	-0.009(6)	0.060(12)
40	C21B	0.042(6)	0.072(8)	0.037(6)	0.008(5)	0.008(4)	0.020(5)

41	C22B	0.030(8)	0.121(13)	0.044(7)	-0.044(7)	-0.019(6)	0.019(8)
42	C23B	0.036(7)	0.102(11)	0.066(8)	-0.025(8)	-0.003(5)	0.005(6)
43							

Table 7. Anisotropic Displacement Parameters (continued)

45	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
46	C24B	0.039(6)	0.060(6)	0.081(8)	-0.032(6)	-0.020(5)	-0.005(5)
47	C25B	0.043(6)	0.043(5)	0.043(6)	-0.005(5)	-0.002(5)	0.009(4)
48							

49 The form of the anisotropic displacement parameter is:

50
$$\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$$

Table 8. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

53	Atom	X	у	Ζ	U _{eq} , Å ²
54	H2	0.3364	0.5495	0.6251	0.043
55	Н3	0.4428	0.3719	0.6656	0.044
56	H8A	0.4330	0.3828	0.2029	0.047
57	H8B	0.3593	0.5022	0.2071	0.047
58	H13	0.1233	0.0935	0.1637	0.064
59	H14	0.2564	0.2065	0.2501	0.055
60	H15A	0.1644	0.3545	-0.1480	0.084
61	H15B	0.2612	0.3647	-0.0743	0.084
62	H15C	0.2084	0.2251	-0.0985	0.084
63	H16	0.3142	0.6953	0.3844	0.045
64	H17A	0.2665	0.8894	0.4260	0.058
65	H17B	0.1663	0.8601	0.3567	0.058
66	H18A	0.0863	0.7686	0.4471	0.057
67	H18B	0.1431	0.8941	0.4954	0.057
68	H19A	0.2721	0.7662	0.5693	0.052
69	H19B	0.1816	0.6619	0.5586	0.052
70	H21A ^a	0.1035	0.5113	0.3938	0.051
71	H23A ^a	0.0068	0.4605	0.1550	0.059
72	H24A ^a	0.1198	0.6222	0.1355	0.069
73	H25A <i>a</i>	0.2323	0.7174	0.2453	0.053
74	H21B ^b	0.2019	0.6521	0.2408	0.061
75	H23B ^b	-0.0126	0.3708	0.2053	0.085
76	$H24B^b$	0.0022	0.3632	0.3427	0.080
77	$H25B^b$	0.1168	0.5001	0.4292	0.054

⁷⁸ a Included with an occupancy factor of 0.6. b Included with an occupancy factor of 0.4.

81 8. REFERENCES

83	1.	(a) Englebienne, P., Moitessier N. (2009) Docking ligands into flexible and solvated
84		macromolecules. 5. Force-field-based prediction of binding affinities of ligands to
85		proteins. J. Chem. Inf. Model 49, 2564-2571. (b) Therrien, E., Englebienne, P.,
86		Arrowsmith, A.G., Mendoza-Sanchez, R., Corbeil, C.R., Weill, N., Campagna-Slater, V.,
87		Moitessier, N. (2012) Integrating medicinal chemistry, organic/combinatorial chemistry,
88		and computational chemistry for the discovery of selective estrogen receptor
89		modulators with FORECASTER, a novel platform for drug discovery J. Chem. Inf. Model
90		52, 210-224. (c) Corbeil, C.R.; Englebienne, P.; Yannopoulos, C.G.; Chan, L.; Das, S.K.;
91		Bilimoria, D.; L'Heureux, L., Moitessier, N. (2008) Docking ligands into flexible and
92		solvated macromolecules. 2. Development and application of FITTED 1.5 to the virtual
93		screening of potential HCV polymerase inhibitors. J. Chem. Inf. Model 48, 902-909.
94		
95		
96		