Supporting Information

Novel indole-flutimide heterocycles with activity against influenza PA endonuclease and hepatitis C virus
Grigoris Zoidis, ${ }^{*, a}$ Erofili Giannakopoulou, ${ }^{a}$ Annelies Stevaert, ${ }^{b}$ Efseveia Frakolaki, ${ }^{c}$ Vassilios Bartenschlager, ${ }^{\text {d,e }}$ Niki Vassilaki ${ }^{\text {c, }}$ and Lieve Naesens ${ }^{\mathrm{b}, \S}$
${ }^{\text {a }}$ School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupoli-Zografou, GR-15784, Athens, Greece
${ }^{\text {b }}$ Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
'Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521, Athens, Greece
${ }^{\text {d}}$ Department of Infectious Diseases, Molecular Virology, University of Heidelberg,Heidelberg, Germany
${ }^{\text {eG German }}$ Center for Infection Research, Heidelberg University
*Corresponding author Dr. Grigoris Zoidis (zoidis@pharm.uoa.gr)
${ }^{\dagger}$ Principal investigator of the study on Hepatitis C virus
${ }^{\text {§Principal investigator of the study on influenza A endonuclease }}$
Contents
Experimental. Chemistry 2
Experimental. Biological Assays. Influenza PA endonuclease assay 13
Experimental. Biological Assays. HCV Replication assays 14
Theoretical simulations 16
Copies of NMR spectra 18
${ }^{1} \mathrm{H}$ NMR of 24 18
${ }^{13} \mathrm{C}$ NMR of 24 18
COSY NMR of 24 19

```
1H +3'C HSQC NMR of 2419
```


Experimental

Chemistry

General. Melting points were determined using a Büchi capillary apparatus and are uncorrected. The 1H and 13C NMR spectra were obtained on either a Bruker MSL 400 (400 $\mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$) or Bruker $600\left(600 \mathrm{MHz}{ }^{1} \mathrm{H}\right)$ spectrometer, using CDCl_{3} or DMSO-d d_{6} as solvent. Chemical shifts are reported in $\delta(\mathrm{ppm})$ with the tetramethylsilane or solvent (DMSO- d_{6}) as internal standard. Spliting paterns are designated as s, singlet; d, doublet; dd, doublet of doublets; t , triplet; td , triplet of doublets; q , quartet; m , multiplet; bs , broad singlet.. Coupling constants (J) are expressed in units of hertz (Hz). The spectra were recorded at $293 \mathrm{~K}\left(20^{\circ} \mathrm{C}\right)$ unless otherwise specified. Carbon multiplicities were established by DEPT experiments. The 2D NMR experiments (HMQC, HMBC and COSY) were performed for the elucidation of the structures of the newly synthesized compounds. Analytical thinlayer chromatography (TLC) was conducted on precoated Merck silica gel 60 F254 plates (layer thickness 0.2 mm) with the spots visualized by iodine vapors and/or UV light. Column chromatography purification was carried out on silica gel 60 ($0.040-0.063 \mathrm{~mm}$). Elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed by the Service Central de Microanalyse at CNRS (France), and were within $\pm 0.4 \%$ of the theoretical values. Elemental analysis results for the tested compounds correspond to $>95 \%$ purity. The commercial reagents were purchased from Alfa Aesar, Sigma-Aldrich, and Merck, and were used without further purification except for the benzyl bromoacetate. This reagent was purified by fractional distillation in vacuo prior to use. Organic solvents used were in the highest purity, and when necessary, were dried by the standard methods. Solvent abbreviations: THF, tetrahydrofuran; DMF, dimethylformamide; $\mathrm{Et}_{2} \mathrm{O}$, diethyl ether; MeOH , methanol; EtOH , ethanol; AcOEt, ethyl
acetate; DMSO, dimethylsulfoxide. Reagent abbreviations: DMAP, 4(Dimethylamino)pyridine; DCC, $\quad N, N^{\prime}$-Dicyclohexylcarbodiimide; $\quad \mathrm{EDCI} \cdot \mathrm{HCl}, \quad \mathrm{N}$-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride; HOBt, 1-Hydroxybenzotriazole hydrate; DIEA, N,N-Diisopropylethylamine.

General procedure for the preparation of esters 2, 8 and 14.

A solution of (5-substituted-) 1H-indole-2-carboxylic acid (26.0 mmol), benzyl alcohol (32.5 mmol), and DMAP (5.2 mmol) in 162 mL of dichloromethane was treated with DCC (26.0 mmol) and stirred at room temperature for 3 h . The resulting mixture was filtered, concentrated in vacuo, taken up in 362 mL of ethyl acetate, and filtered. The solution was subsequently washed sequentially with $1 \mathrm{~N} \mathrm{HCl}(2 \times 30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, and brine ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography on silica gel.

Benzyl 1H-indole-2-carboxylate (2)

It was prepared by reacting 1 H -indole-2-carboxylic acid (1) with benzyl alcohol, following the general esterification procedure. Column chromatography on silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent, gave 2 (87% yield) as a pale yellow crystalline solid, of which the characteristics are consistent with the literature. ${ }^{1}$

Benzyl 5-methoxy-1H-indole-2-carboxylate (8)

It was prepared by reacting 5 -methoxy-1H-indole-2-carboxylic acid (7) with benzyl alcohol, following the general esterification procedure. Column chromatography on silica gel, using a mixture of eluents n-hexane/AcOEt (4:1), gave $\mathbf{8}$ (69% yield) as a pale yellow crystalline solid; $m p 140-142{ }^{\circ} \mathrm{C}\left(\mathrm{AcOEt}^{2} / \mathrm{Et}_{2} \mathrm{O}, n\right.$-pentane $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.91(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=8.9 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, H_{6}\right), 6.98\left(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, H_{4}\right), 7.12\left(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, H_{3}\right), 7.20(\mathrm{dd}, 1 \mathrm{H}$,
$J_{1}=8.9 \mathrm{~Hz}, J_{2}=0.5 \mathrm{~Hz}, H_{7}$), 7.24-7.40 (complex m, 5H, $H_{2^{\prime}}, H_{3^{\prime}}, H_{4^{\prime}}, H_{5^{\prime}}, H_{6^{\prime}}$, 8.96 (bs, 1H, NH); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 55.6\left(\mathrm{OCH}_{3}\right), 66.6\left(\mathrm{CH}_{2}\right), 102.5\left(C_{4}\right), 108.7\left(C_{3}\right), 112.8\left(C_{7}\right)$, $117.2\left(C_{6}\right), 127.4\left(C_{2}\right), 127.8\left(C_{3}\right), 128.2\left(C_{2^{\prime}}, C_{6^{\prime}}\right), 128.4\left(C_{4^{\prime}}\right), 128.6\left(C_{3^{\prime}}, C_{5^{\prime}}\right), 132.3\left(C_{7 a}\right), 135.8$ $\left(C_{1^{\prime}}\right), 154.7\left(C_{5}\right), 161.8(C=O)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 72.58 ; \mathrm{H}, 5.37 ; \mathrm{N}, 4.98$. Found C , 72.49; H, 5.48; N, 4.82.

Benzyl 5-fluoro-1H-indole-2-carboxylate (14)

It was prepared by reacting 5-fluoro-1H-indole-2-carboxylic acid (13) with benzyl alcohol, following the general esterification procedure. Column chromatography on silica gel, using a mixture of eluents n-hexane/AcOEt (4:1), gave 14 (70% yield) as a white crystalline solid; mp $151-153^{\circ} \mathrm{C}$ (AcOEt/n-pentane).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.09\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=9.1 \mathrm{~Hz}, \mathrm{~J}_{2}=2.4 \mathrm{~Hz}, \mathrm{H}_{6}\right)$, $7.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}, H_{3}\right), 7.28-7.35\left(\mathrm{~m}, 2 \mathrm{H}, H_{4}, H_{7}\right), 7.35-7.51$ (complex m, 5H, $H_{2^{\prime}}, H_{3^{\prime}}, H_{4^{\prime}}$, $H_{5^{\prime}}, H_{6^{\prime}}, 9.18(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 66.8\left(\mathrm{CH}_{2}\right), 106.5,107.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}}\right.$ $\left.{ }_{F}=23.3 \mathrm{~Hz}, C_{4}\right), 108.9,109.0\left(\mathrm{~d}, J_{C-F}=5.5 \mathrm{~Hz}, C_{3}\right), 112.7,112.9\left(\mathrm{~d}, J_{C-F}=9.6 \mathrm{~Hz}, C_{7}\right), 114.4,114.9$ ($\left.\mathrm{d}, J_{C-F}=27.0 \mathrm{~Hz}, C_{6}\right), 127.5,127.7\left(\mathrm{~d}, J_{C-F}=10.5 \mathrm{~Hz}, C_{3 a}\right), 128.3\left(C_{2^{\prime}}, C_{6^{\prime}}\right), 128.5\left(C_{4^{\prime}}\right), 128.7\left(C_{3^{\prime}}\right.$, $\left.C_{5^{\prime}}\right), 131.7\left(C_{2}\right), 133.5\left(C_{7 a}\right), 135.6\left(C_{1^{\prime}}\right), 155.8,160.5\left(\mathrm{~d}, J_{C-F}=236.8 \mathrm{~Hz}, C_{5}\right), 161.6(C=0)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FNO}_{2}: \mathrm{C}, 71.37 ; \mathrm{H}, 4.49 ; \mathrm{N}, 5.20$. Found: $\mathrm{C}, 71.48 ; \mathrm{H}, 4.57 ; \mathrm{N}, 5.34$.

General procedure for the preparation of diesters 3, 9 and 15.

Sodium hydride ($9.78 \mathrm{mmol}, 60 \%$ in mineral oil) was added portionwise to a stirred, ice-cold, solution of benzyl (5-substituted-) $1 H$-indole-2-carboxylate (8.89 mmol) in dry DMF (9 mL). After stirring at room temperature for 1 h under argon, ethyl bromoacetate (9.69 mmol), dissolved in dry DMF (3 mL) was added dropwise. Stirring was continued at rt for 24 h under argon, and the reaction mixture was then poured onto ice/water mixture (80 mL), and extracted with AcOEt ($4 \times 60 \mathrm{~mL}$). The combined organic extracts were washed with brine
$(3 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The crude residue was purified by flash column chromatography on silica gel.

Benzyl 1-(2-ethoxy-2-oxoethyl)-1H-indole-2-carboxylate (3)

It was prepared by reacting benzyl ester $\mathbf{2}$ with ethyl-bromoacetate, following the general procedure for the preparation of diesters. Column chromatography on silica gel, using a mixture of eluents n-hexane/AcOEt (4:1), gave 3 (86% yield) as a colorless, clear, viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.19(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{COO}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{Ph}\right), 7.18\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=7.9 \mathrm{~Hz}, \mathrm{~J}_{2}=0.8\right.$ $\left.\mathrm{Hz}, H_{5}\right), 7.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, H_{7}\right), 7.32-7.48$ (complex m, 7H, $H_{3}, H_{2^{\prime}}, H_{3^{\prime}}, H_{4^{\prime}}, H_{5^{\prime}}, H_{6^{\prime}}$ and H_{6}), 7.69 (d, 1H, J=8.0 Hz, H_{4}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}) 14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 46.3$ $\left(\mathrm{NCH}_{2} \mathrm{COO}\right), 61.5\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 66.4\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right), 109.7\left(C_{7}\right), 111.7\left(C_{3}\right), 121.2\left(C_{5}\right), 123.0$ $\left(C_{4}\right), 125.7\left(C_{6}\right), 126.2\left(C_{2}\right), 127.4\left(C_{3 a}\right), 128.2\left(C_{3^{\prime}}, C_{5^{\prime}}\right), 128.3\left(C_{4^{\prime}}\right), 128.7\left(C_{2^{\prime}}, C_{6^{\prime}}\right), 136.0\left(C_{1^{\prime}}\right)$, $139.6\left(C_{7 a}\right), 162.0\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right), 168.9\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right) . \mathrm{HRMS} / \mathrm{ESI}{ }^{+}(\mathrm{m} / \mathrm{z})$: Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}$: 353.1627; Found 353.1633.

Benzyl 1-(2-ethoxy-2-oxoethyl)-5-methoxy-1H-indole-2-carboxylate (9)

It was prepared by reacting benzyl ester $\mathbf{8}$ with ethyl-bromoacetate, following the general procedure for the preparation of diesters. Column chromatography on silica gel, using a mixture of eluents n-hexane/AcOEt (7:1, then 6:1), gave 9 (83%) as a colorless, viscous oil which was crystallized by adding n-pentane and cooling; $\mathrm{mp} 88-90^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} / n$-pentane).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.19$ (q, 2H, J=7.1 Hz, COOCH CH_{3}), 5.29 (s, 2H, NCH COO), 5.34 (s, $2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{Ph}$), 7.04 (dd, 1 H , $\left.J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, H_{6}\right), 7.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, H_{4}\right), 7.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, H_{7}\right), 7.31-7.48$ (complex m, 5H, $\mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}, H_{4^{\prime}}, H_{5^{\prime}}, H_{6^{\prime}}$), $7.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.6 \mathrm{~Hz}, \mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ (ppm) $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 46.4\left(\mathrm{NCH}_{2} \mathrm{COO}\right), 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 61.6\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 66.3\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right)$,
$103.1\left(C_{4}\right), 110.7\left(C_{7}\right), 111.1\left(C_{3}\right), 117.2\left(C_{6}\right), 126.5\left(C_{3 a}\right), 127.7\left(C_{2}\right), 128.2\left(C_{2^{\prime}}, C_{6^{\prime}}\right), 128.3\left(C_{4^{\prime}}\right)$, $128.7\left(C_{3^{\prime}}, C_{5^{\prime}}\right), 135.2\left(C_{7 a}\right), 136.1\left(C_{1^{\prime}}\right), 155.1\left(C_{5}\right), 161.9\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right), 169.0\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}$: C, 68.65; H, 5.76; N, 3.81. Found C, 68.67; H, 5.89; N, 3.92.

Benzyl 1-(2-ethoxy-2-oxoethyl)-5-fluoro-1H-indole-2-carboxylate (15)

It was prepared by reacting benzyl ester 14 with ethyl-bromoacetate, following the general procedure for the preparation of diesters. Column chromatography on silica gel, using a mixture of eluents n-hexane/AcOEt (7:1, then 6:1), gave 15 (86% yield) as a colorless, viscous oil which was crystalized with cooling; $\mathrm{mp} 81-83^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.19(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $5.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{COO}\right), 5.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{Ph}\right), 7.12\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=9.0 \mathrm{~Hz}, \mathrm{~J}_{2}=2.5\right.$ $\left.\mathrm{Hz}, H_{6}\right), 7.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, H_{7}\right), 7.32\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, H_{4}\right), 7.34-$ 7.47 (complex m, $\left.\left.5 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}, H_{4^{\prime}}, H_{5^{\prime}}, H_{6^{\prime}}\right), 7.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz} \mathrm{CDCl} 3,\right) ~ \delta(p p m)$ $14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 46.3\left(\mathrm{NCH}_{2} \mathrm{COO}\right), 61.6\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 66.5\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right), 106.9,107.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}}\right.$ $\left.{ }_{F}=23.3 \mathrm{~Hz}, C_{4}\right), 110.5,110.7\left(\mathrm{~d}, J_{C-F}=9.6 \mathrm{~Hz}, C_{7}\right), 111.1,111.3\left(\mathrm{~d}, J_{C-F}=5.3 \mathrm{~Hz}, C_{3}\right), 114.3,114.9$ $\left(\mathrm{d}, J_{C-F}=27.0 \mathrm{~Hz}, C_{6}\right), 126.1,126.3\left(\mathrm{~d}, J_{C-F}=10.2 \mathrm{~Hz}, C_{3 a}\right), 128.1\left(C_{2^{\prime}}, C_{6^{\prime}}\right), 128.3\left(C_{4^{\prime}}\right), 128.6\left(C_{3^{\prime}}\right.$, $\left.C_{5^{\prime}}\right), 130.4\left(C_{2}\right), 135.7\left(C_{1^{\prime}}\right), 136.1\left(C_{7 a}\right), 156.0,160.7\left(\mathrm{~d}, J_{C-F}=237.4 \mathrm{~Hz}, C_{5}\right), 161.6\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right)$, $168.6\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNO}_{4}$: $\mathrm{C}, 67.60 ; \mathrm{H}, 5.11 ; \mathrm{N}, 3.94$. Found: $\mathrm{C}, 67.49$; H, 5.14; N, 3.92.

General procedure for the preparation of acid esters 4,10 and 16.

A solution of the respective benzyl 1-(2-ethoxy-2-oxoethyl)-1H-indole-2-carboxylate (1 mmol) in a mixture of absolute EtOH/AcOEt (2:1, 30 mL) was hydrogenated (Pd-C 10\%, 45 mg) for 3 h , at room temperature and 50 psi pressure. The catalyst was filtered off, washed with hot EtOH ($3 \times 10 \mathrm{~mL}$), and the combined filtrates were evaporated in vacuo to afford pure the respective acid esters.

1-(2-Ethoxy-2-oxoethyl)-1H-indole-2-carboxylic acid (4)

It was prepared by hydrogenolysis of diester 3 following the general procedure. Evaporation of the solvents gave 4 (96% yield) as a white crystalline solid; mp $189-191{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH}^{2} \mathrm{Et}_{2} \mathrm{O}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.24(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{COO}\right), 7.20\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 7.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.40$ (td, $\left.1 \mathrm{H}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, H_{6}\right), 7.54\left(\mathrm{~s}, 1 \mathrm{H}, H_{3}\right), 7.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, H_{4}\right), 8.83(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 46.4\left(\mathrm{NCH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 61.7$ $\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 109.9\left(C_{7}\right), 113.7\left(C_{3}\right), 121.5\left(C_{5}\right), 123.3\left(C_{4}\right), 126.3\left(C_{3 a}\right), 126.4\left(C_{6}\right) 126.6\left(C_{2}\right)$ $140.2\left(C_{7 a}\right), 167.1(\mathrm{COOH}), 169.0\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 63.15 ; \mathrm{H}, 5.30$; N, 5.67. Found: C, 63.27; H, 5.63; N, 5.75.

1-(2-Ethoxy-2-oxoethyl)-5-methoxy-1H-indole-2-carboxylic acid (10)

It was prepared by hydrogenolysis of diester 9 following the general procedure. Evaporation of the solvents gave 10 (97% yield) as a white crystalline solid; mp $189-191{ }^{\circ} \mathrm{C}(\mathrm{AcOEt} / n-$ pentane, $\mathrm{Et}_{2} \mathrm{O}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.12\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 5.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{COO}\right), 6.96\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}\right.$, $\left.H_{6}\right), 7.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, H_{4}\right), 7.18\left(\mathrm{~s}, 1 \mathrm{H}, H_{3}\right), 7.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}, H_{7}\right), 12.94(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 46.1\left(\mathrm{NCH}_{2} \mathrm{COO}\right), 55.3\left(\mathrm{OCH}_{3}\right), 60.7$ $\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 102.4\left(C_{4}\right), 109.6\left(C_{3}\right), 111.7\left(C_{7}\right), 116.0\left(C_{6}\right), 125.8\left(C_{3 a}\right), 128.4\left(C_{2}\right), 134.7\left(C_{7 a}\right)$, $154.3\left(\mathrm{C}_{5}\right), 162.8(\mathrm{COOH}), 169.1\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}: \mathrm{C}, 60.64 ; \mathrm{H}, 5.45 ; \mathrm{N}$, 5.05. Found C, 60.59; H, 5.42; N, 5.08.

1-(2-Ethoxy-2-oxoethyl)-5-fluoro-1H-indole-2-carboxylic acid (16)

It was prepared by hydrogenolysis of diester 15 following the general procedure. Evaporation of the solvents gave 16 (93% yield) as a white crystalline solid; mp $178-180^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} / n$-pentane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}) 1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.13(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1$ $\left.\mathrm{Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 5.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.19\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=9.2 \mathrm{~Hz}, \mathrm{~J}_{2}=2.3 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.46$ (dd, 1H, $\left.J_{1}=9.4 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, H_{4}\right), 7.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, H_{7}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 14.1\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 46.3\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 106.1,106.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.2 \mathrm{~Hz}\right.$, $\left.C_{4}\right), 109.6,109.7\left(\mathrm{~d}, J_{C-F}=5.2 \mathrm{~Hz}, C_{3}\right), 112.1,112.3\left(\mathrm{~d}, J_{C-F}=9.6 \mathrm{~Hz}, C_{7}\right), 113.1,113.7\left(\mathrm{~d}, J_{C-F}=26.6\right.$ $\left.\mathrm{Hz}, C_{6}\right), 125.4,125.7\left(\mathrm{~d}, J_{C-F}=10.6 \mathrm{~Hz}, C_{3 a}\right), 130.2\left(C_{2}\right), 135.9\left(C_{7 a}\right), 155.2159 .8\left(\mathrm{~d}, J_{C-F}=234.3\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{5}\right), 162.7(\mathrm{COOH}), 168.9\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FNO}_{4}$: C, 58.87; H, 4.56; N, 5.28. Found: C, 58.73; H, 4.55; N, 5.34.

General procedure for the preparation of O-benzyl hydroxamates 5, 11 and 17.
To a solution of the respective acid ester (1.14 mmol) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMF}$ (4:1, 12 mL) were added sequentially $\mathrm{EDCl} \cdot \mathrm{HCl}(1.36 \mathrm{mmol})$, $\mathrm{HOBt}(1.36 \mathrm{mmol})$, DIEA (4.56 mmol) and O-benzyl hydroxylamine hydrochloride (1.37 mmol) and the mixture was stirred at $35^{\circ} \mathrm{C}$ for 48 h under argon. The reaction mixture was concentrated under reduced pressure, poured onto ice/water mixture (40 mL), and extracted with AcOEt ($4 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL}), 10 \%$ aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 40$ $\mathrm{mL})$, brine $(3 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified through flash column chromatography on silica gel.

2-(Benzyloxy)pyrazino[1,2-a]indole-1,3(2H,4H)-dione (5)

It was prepared by reacting the respective acid ester 4 with O-benzyl hydroxylamine hydrochloride following the general procedure for the preparation of O-benzyl hydroxamates. The residue was purified through flash column chromatography on silica gel,
using a mixture of eluents n-hexane/AcOEt 2:1 increased to AcOEt 100%, to afford 5 (67\%) as a white crystalline solid; mp 219-221 ${ }^{\circ} \mathrm{C}$ (AcOEt/ n-pentane).
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d d_{6}) $\delta(\mathrm{ppm}) 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}{ }_{2} \mathrm{Ph}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.22(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4$ Hz, H_{8}), 7.39-7.46 (complex m, 5H, $H_{3^{\prime}}, H_{4^{\prime}}, H_{5^{\prime}}, H_{7}, H_{10}$), $7.59\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, H_{2^{\prime}}, H_{6^{\prime}}\right), 7.61$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{1}=8.4 \mathrm{~Hz}, \mathrm{~J}_{2}=0.5 \mathrm{~Hz}, H_{6}\right), 7.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}_{9}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ (ppm) $47.8\left(C_{4}\right), 77.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 106.7\left(C_{7}\right), 111.2\left(C_{6}\right), 121.4\left(C_{8}\right), 122.7\left(C_{9}\right), 125.48\left(C_{10 a}\right)$, $125.53\left(C_{10}\right), 126.5\left(C_{9 a}\right), 128.4\left(C_{3^{\prime}}, C_{5^{\prime}}\right), 128.9\left(C_{4^{\prime}}\right), 129.4\left(C_{2^{\prime}}, C_{6^{\prime}}\right), 134.4\left(C_{1^{\prime}}\right), 136.6\left(C_{5 a}\right)$, $163.2\left(C_{1}=\mathrm{O}, \mathrm{C}_{3}=\mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 70.58 ; \mathrm{H}, 4.61 ; \mathrm{N}, 9.15$. Found $\mathrm{C}, 70.49 ; \mathrm{H}$, 4.73; N, 9.33.

2-(Benzyloxy)-8-methoxypyrazino[1,2-a]indole-1,3(2H,4H)-dione (11)

It was prepared by reacting the respective acid ester 10 with O-benzyl hydroxylamine hydrochloride following the general procedure for the preparation of O-benzyl hydroxamates. The residue was purified through flash column chromatography on silica gel, using a mixture of eluents n-hexane/AcOEt (7:1) increased to AcOEt and finally AcOEt/MeOH (10:1), to give 11 (59\%) as a white crystalline solid; $m p 220-222^{\circ} \mathrm{C}$ (THF/n-pentane).
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d d_{6}) $\delta(\mathrm{ppm}) 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.31(\mathrm{~s}, 2 \mathrm{H}$, H_{4}), $7.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, H_{7}\right), 7.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, H_{9}\right), 7.30\left(\mathrm{~s}, 1 \mathrm{H}, H_{10}\right), 7.37-$ 7.48 (complex m, $3 \mathrm{H}, \mathrm{H}_{3^{\prime}}, H_{4^{\prime}}, H_{5^{\prime}}$), $7.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}, H_{6}\right), 7.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2^{\prime}}, H_{6^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 47.9\left(\mathrm{C}_{4}\right), 55.3\left(\mathrm{OCH}_{3}\right), 77.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 102.5\left(C_{9}\right), 106.2\left(C_{10}\right)$, $112.2\left(C_{6}\right), 117.2\left(C_{7}\right), 125.6\left(C_{10 a}\right), 127.1\left(C_{9 a}\right), 128.4\left(C_{3^{\prime}}, C_{5^{\prime}}\right), 128.9\left(C_{4^{\prime}}\right), 129.4\left(C_{2^{\prime}}, C_{6^{\prime}}\right)$, $132.2\left(C_{5 a}\right), 134.5\left(C_{1^{\prime}}\right), 154.8\left(C_{8}\right), 155.2\left(C_{1}=\mathrm{O}\right), 163.3\left(C_{3}=\mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}$, 67.85; H, 4.80; N, 8.33. Found C, 67.92; H, 4.73; N, 8.45.

It was prepared by reacting the respective acid ester 16 with O-benzyl hydroxylamine hydrochloride following the general procedure for the preparation of O-benzyl hydroxamates. The residue was purified through flash column chromatography on silica gel, using a mixture of eluents n-hexane/AcOEt (7:1 and then 2:1), to afford 17 (58\%) as a white crystalline solid; mp $235-237^{\circ} \mathrm{C}$ (THF/n-pentane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}) 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.31(\mathrm{t}, 1 \mathrm{H}$, $\left.J_{1}=9.2 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, H_{7}\right), 7.37\left(\mathrm{~s}, 1 \mathrm{H}, H_{10}\right), 7.38-7.48$ (complex m, $3 \mathrm{H}, H_{3^{\prime}}, H_{4^{\prime}}, H_{5^{\prime}}$), 7.52-7.62 (complex m, 3H, $H_{9}, H_{2^{\prime}}, H_{6^{\prime}}$), $7.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, H_{6}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $\left.d_{6}\right) \delta(p p m) 48.1\left(C_{4}\right), 77.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 106.4,106.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5.3 \mathrm{~Hz}, C_{10}\right), 106.6,107.1(\mathrm{~d}$, $\left.J_{C-F}=24.0 \mathrm{~Hz}, C_{9}\right), 112.8,112.9\left(\mathrm{~d}, J_{C-F}=9.6 \mathrm{~Hz}, C_{6}\right), 114.3,114.8\left(\mathrm{~d}, J_{C_{-F}}=27.1 \mathrm{~Hz}, C_{7}\right), 126.6$, $126.8\left(\mathrm{~d}, J_{C-F}=10.8 \mathrm{~Hz}, C_{9 a}\right), 127.1\left(C_{10 a}\right), 128.4\left(C_{3^{\prime}}, C_{5^{\prime}}\right), 128.9\left(C_{4^{\prime}}\right), 129.4\left(C_{2^{\prime}}, C_{6^{\prime}}\right), 133.5\left(C_{5 a}\right)$, $134.4\left(C_{1^{\prime}}\right), 155.2\left(C_{1}=0\right), 155.5,160.2\left(\mathrm{~d}, J_{C-F}=235.3 \mathrm{~Hz}, C_{8}\right), 163.1\left(C_{3}=0\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{3}: \mathrm{C}, 66.66 ; \mathrm{H}, 4.04 ; \mathrm{N}, 8.64$. Found: $\mathrm{C}, 66.62 ; \mathrm{H}, 4.09 ; \mathrm{N}, 8.56$.

General procedure for the preparation of N-hydroxyimides 6, 12 and 18.

A solution of the appropriate O-benzyl hydroxamate (1 mmol) in a mixture of absolute EtOH/AcOEt (2:1, 100 mL), was hydrogenated (Pd-C $10 \%, 45 \mathrm{mg}$) for 3 h , at room temperature and 50 psi pressure. The catalyst was filtered off, washed with hot EtOH (3×20 $\mathrm{mL})$, and the combined filtrates were evaporated in vacuo. Purification of the residue, using silica gel flash column chromatography, provided the pure N-hydroxyimides.

2-Hydroxypyrazino[1,2-a]indole-1,3(2H,4H)-dione (6)

It was prepared by hydrogenolysis of the corresponding diketopiperazine analogue $\mathbf{5}$ following the general procedure. After evaporation of the solvents the residue was purified by column chromatography on silica gel using a mixture of eluents AcOEt/MeOH (5:1), to
afford 6 (almost quantitative yield) as a pale yellow crystalline solid; mp $215-216{ }^{\circ} \mathrm{C}$ (dec, $\left.\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}) 5.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.20\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=7.8 \mathrm{~Hz}, \mathrm{~J}_{2}=0.6 \mathrm{~Hz}, \mathrm{H}_{8}\right)$, $7.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 7.39\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=7.7 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, H_{7}\right), 7.57\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=8.4 \mathrm{~Hz}, J_{2}=0.7 \mathrm{~Hz}, H_{6}\right)$, $7.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{9}\right), 10.64(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$) $\delta(\mathrm{ppm}) 47.4$ $\left(C_{4}\right), 106.2\left(C_{10}\right), 111,2\left(C_{6}\right), 121.3\left(C_{8}\right), 122.6\left(C_{9}\right), 125.3\left(C_{7}\right), 125.6\left(C_{10 a}\right), 126.6\left(C_{9 a}\right), 136.6$ $\left(C_{5 a}\right)$, $156.0\left(C_{1}=\mathrm{O}\right)$, $163.5\left(C_{3}=\mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 61.11 ; \mathrm{H}, 3.73 ; \mathrm{N}, 12.96$. Found C, 61.15; H, 3.81; N, 12.92.

2-Hydroxy-8-methoxypyrazino[1,2-a]indole-1,3(2H,4H)-dione (12)

It was prepared by hydrogenolysis of the corresponding diketopiperazine analogue $\mathbf{1 1}$ following the general procedure. After evaporation of the solvents the residue was purified by column chromatography on silica gel using a mixture of eluents $\mathrm{AcOEt} / \mathrm{MeOH}$ (5:1), to afford $\mathbf{1 2}$ (almost quantitative yield) as a pale yellow crystalline solid; $\mathrm{Mp} 228-230{ }^{\circ} \mathrm{C}$ (dec, AcOEt, MeOH/n-pentane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}) 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.04\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=9.0\right.$ $\left.\mathrm{Hz}, J_{2}=1.8 \mathrm{~Hz}, H_{7}\right), 7.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, H_{9}\right), 7.23\left(\mathrm{~s}, 1 \mathrm{H}, H_{10}\right), 7.48\left(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}, H_{6}\right), 10.62$ (bs, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) \delta(\mathrm{ppm}) 47.5\left(C_{4}\right), 55.3\left(\mathrm{OCH}_{3}\right), 102.5\left(C_{9}\right), 105.7$ $\left(C_{10}\right), 112.2\left(C_{6}\right), 116.9\left(C_{7}\right), 125.7\left(C_{10 a}\right), 127.1\left(C_{9 a}\right), 132.1\left(C_{5 a}\right), 154.8\left(C_{8}\right), 155.9\left(C_{1}=0\right)$, $163.5\left(C_{3}=\mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $58.54 ; \mathrm{H}, 4.09 ; \mathrm{N}, 11.38$. Found C, $58.57 ; \mathrm{H}, 4.11$; N, 11.42.

8-fluoro-2-hydroxypyrazino[1,2-a]indole-1,3(2H,4H)-dione (18)

It was prepared by hydrogenolysis of the corresponding diketopiperazine analogue 17 following the general procedure. After evaporation of the solvents the residue was purified by column chromatography on silica gel, using a mixture of eluents AcOEt/MeOH (5:1), to
afford $\mathbf{1 8}$ (almost quantitative yield) as a pale yellow crystalline solid; $\mathrm{Mp} 205-207{ }^{\circ} \mathrm{C}$ (dec, AcOEt, MeOH/n-pentane).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 5.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.28\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=9.2 \mathrm{~Hz}, \mathrm{~J}_{2}=2.5 \mathrm{~Hz}, H_{7}\right)$, $7.30\left(\mathrm{~s}, 1 \mathrm{H}, H_{10}\right), 7.53\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, H_{9}\right), 7.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, H_{6}\right)$, $10.70(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}) 47.4\left(C_{4}\right)$, 105.9, $106.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5.0\right.$ $\left.\mathrm{Hz}, C_{10}\right), 106.5,107.0\left(\mathrm{~d}, J_{C_{-F}}=23.7 \mathrm{~Hz}, C_{9}\right), 112.7,112.9\left(\mathrm{~d}, J_{C-F}=9.7 \mathrm{~Hz}, C_{6}\right), 113.9,114.5\left(\mathrm{~d}, J_{C_{-}}\right.$ $\left.{ }_{F}=27.1 \mathrm{~Hz}, C_{7}\right), 126.7,126.9\left(\mathrm{~d}, J_{C-F}=10.7 \mathrm{~Hz}, C_{9 a}\right), 127.2\left(C_{10 a}\right), 155.5,160.2\left(\mathrm{~d}, J_{C-F}=235.2 \mathrm{~Hz}\right.$, $\left.C_{8}\right), 155.8\left(C_{1}=\mathrm{O}\right), 163.4\left(C_{3}=\mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}_{3}: \mathrm{C}, 56.42 ; \mathrm{H}, 3.01 ; \mathrm{N}, 11.96$. Found C, 56.45; H, 3.08; N, 11.92.

Synthesis of 2,8-dihydroxypyrazino[1,2-a]indole-1,3(2H,4H)-dione (25)

Compound 12 (2-hydroxy-8-methoxypyrazino[1,2-a]indole-1,3(2H,4H)-dione) (100 mg, 0.41 $\mathrm{mmol})$ was suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled at $0{ }^{\circ} \mathrm{C} . \mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.35 \mathrm{~mL}$, 1.35 mmol) was added dropwise and the mixture was stirred at rt , for 20 h under argon atmosphere. Ice-water (20 mL) was then added and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated in vacuo. The residue was extracted with AcOEt ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with water ($2 \times 10 \mathrm{~mL}$), brine $(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo to afford $\mathbf{2 5}$ (93 mg , almost quantitative yield) as a pale yellow crystalline solid; $\mathrm{mp}>250^{\circ} \mathrm{C}$ (dec, AcOEt , MeOH / n-pentane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}) 5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 6.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=8.9 \mathrm{~Hz}, \mathrm{~J}_{2}=1.9 \mathrm{~Hz}, H_{7}\right)$, $7.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, H_{g}\right), 7.14\left(\mathrm{~s}, 1 \mathrm{H}, H_{10}\right), 7.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}, H_{6}\right), 9.18(\mathrm{bs}, 1 \mathrm{H}, \mathrm{C}-\mathrm{OH})$, 10.58 (bs, 1H, N-OH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}) 47.4\left(C_{4}\right), 105.0\left(C_{9}\right), 105.2\left(C_{10}\right)$, $111.8\left(C_{6}\right), 116.9\left(C_{7}\right), 125.6\left(C_{10 a}\right), 127.5\left(C_{9 a}\right), 131.7\left(C_{5 a}\right), 152.3\left(C_{8}\right), 155.9\left(C_{1}=0\right), 163.6$ ($C_{3}=\mathrm{O}$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 56.90; H, 3.47; N, 12.06. Found C, 56.82; H, 3.31; N, 12.10.

Synthesis of pyrazino[1,2-a]indole-1,3(2H,4H)-dione (26)

To a solution of 4 (1-(2-ethoxy-2-oxoethyl)-1H-indole-2-carboxylic acid) ($600 \mathrm{mg}, 2.43 \mathrm{mmol}$) in dry THF (7 mL) was added dropwise, under ice-cooling, a solution of thionyl chloride (524 $\mathrm{mg}, 4.40 \mathrm{mmol})$ in dry THF (0.6 mL). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h and then at room temperature for another 2 h . The mixture was evaporated in vacuo, at low temperature $\left(<35^{\circ} \mathrm{C}\right)$ and the crude chloride was dissolved in dry THF (5 mL). To this solution was added, in one portion, a saturated solution of ammonia in dichloromethane (5 mL) and the mixture was stirred at $30^{\circ} \mathrm{C}$ for 17 h . After removal of the solvents the crude residue was purified by flash column chromatography on silica gel, using a mixture of eluents n hexane/THF (2:1), to afford pure the target compound 26 ($410 \mathrm{mg}, 84 \%$) as a white crystalline solid; $\mathrm{mp} 239-241{ }^{\circ} \mathrm{C}$ (dec, THF / n-pentane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}) 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.19\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{1}=7.8 \mathrm{~Hz}, \mathrm{~J}_{2}=0.6 \mathrm{~Hz}, \mathrm{H}_{8}\right)$, $7.31\left(\mathrm{~s}, 1 \mathrm{H}, H_{10}\right), 7.38\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, H_{7}\right), 7.57\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.7 \mathrm{~Hz}, H_{6}\right)$, $7.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{9}\right), 11.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}) 46.3\left(\mathrm{C}_{4}\right)$, $105.6\left(C_{10}\right), 111,2\left(C_{6}\right), 121.3\left(C_{8}\right), 122.7\left(C_{9}\right), 125.1\left(C_{7}\right), 125.6\left(C_{10 a}\right), 126.7\left(C_{9 a}\right), 136.7\left(C_{5 a}\right)$, $159.0\left(C_{1}=\mathrm{O}\right), 168.2\left(C_{3}=\mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 66.00 ; \mathrm{H}, 4.03 ; \mathrm{N}, 13.99$. Found: C , 66.13; H, 4.01; N, 13.81;

Experimental. Biological Assays.

Influenza PA endonuclease assay

The enzymatic influenza endonuclease assay was performed according to a previously published procedure. ${ }^{2}$ Briefly, recombinant PA-Nter [residues 1-217 from the PA protein of influenza virus strain $A / X-31$] was expressed in E. coli and purified. One microgram of the enzyme was incubated with $1 \mu \mathrm{~g}(16.7 \mathrm{nM})$ of single-stranded circular DNA plasmid M13mp18 (Bayou Biolabs, Metairie, Louisiana) in the presence of the test compounds and at
a final volume of $25 \mu \mathrm{~L}$. The assay buffer contained 50 mM Tris- $\mathrm{HCl} \mathrm{pH} 8,100 \mathrm{mM} \mathrm{NaCl}, 10$ $\mathrm{mM} \beta$-mercaptoethanol and 1 mM MnCl 2 . After 2 h incubation at $37^{\circ} \mathrm{C}$, the reaction was stopped by heat inactivation $\left(80^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$. Endonucleolytic digestion of the plasmid was visualized by gel electrophoresis on a 1% agarose gel with ethidium bromide staining and the amount of remaining intact plasmid was quantified by ImageQuant TL software (GE Healthcare). The percentage inhibition of PA endonuclease activity was plotted against the compound concentration on a semi-logarithmic plot, using GraphPad Prism software (GraphPad Software, La Jolla, CA). The 50% inhibitory concentrations (IC_{50}) were obtained by nonlinear least-squares regression analysis of the results from three independent experiments.

Cytotoxicity towards HEK293T cells

The compound cytotoxicity, expressed as MCC, was determined in HEK293T cells after 24 h incubation, using microscopic analysis of cell morphology. ${ }^{3}$

HCV Replication assays

Cell culture. Huh 5-2 stable cell line has been previously described in (25) and harbors a subgenomic reporter replicon of Con1 strain (genotype 1b). Specifically, it has been established upon transfection of Huh7-Lunet cells with the bicistronic RNA transcribed from pFK I389luc-ubi-neo/NS3-3'/5.1. This carries in the first cistron the firefly luciferase (luc) gene fused in frame with the neomycin gene (neo) under the translational control of the Con1 IRES and in the second cistron the Con1 NS3-3'NTR region. Cells were grown in high glucose (25 mM) Dulbecco's modified minimal essential medium (DMEM) (Invitrogen) supplemented with 2 mM L-glutamine, 0.1 mM non-essential amino acids, $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin, $10 \%(\mathrm{v} / \mathrm{v}$) fetal calf serum (referred to as complete DMEM) and $500 \mu \mathrm{~g} / \mathrm{ml}$ G418.

Anti-HCV assay: Anti-HCV assay in replicon cells was performed by seeding 1×104 cells per well in a 96 -well flat bottom plate in 200μ l complete DMEM supplememted with G 418 . Following incubation for 24 h at $37^{\circ} \mathrm{C}(5 \% \mathrm{CO})$, medium was removed and 2 -fold serial dilutions in complete DMEM (without G418) of the test compounds were added in a total volume of $100 \mu \mathrm{l}$. After 3 days of incubation at $37^{\circ} \mathrm{C}$, cell culture medium was removed and luciferase activity was measured. Relative luminescence units were converted to percentage of treated with DMSO controls. The 50\% effective concentration (EC50) was defined as the concentration of compound that reduced the luciferase signal by 50%.

Measurement of median lethal concentration (LC50) of the compounds. The LC50 of the compounds in cells was determined by using the alamarBlue dye. It is a redox indicator that yields both a fluorescent signal and a colorimetric change from blue to red in response to the chemical reduction of growth medium, resulting from cell growth. Damaged and non-viable cells have lower innate metabolic activity, and generate a proportionally lower signal. AlamarBlue reduction is dependent on both the glycolytic and oxidative metabolism of glucose, which is important in the case of hepatocarcinoma cells as they produce energy mainly via glycolysis. Specifically, 104 cells per well were seeded in 96 -well flat bottom plates in total volume of 100μ l complete DMEM. 24 h post-seeding, cells were incubated with the compounds for 72 hrs at $37^{\circ} \mathrm{C}(5 \% \mathrm{CO} 2)$, alamarBlue (10 $\mathrm{\mu} /$ /well) was added for a further 24 hrs and colorimetric changes were read at 550 nm with reference wavelength 620 nm using a plate photometer (MRX Dynatech Laboratories). Calculation of the compound concentration causing 50% cell death (LC50) was performed using cells treated with DMSO as control sample. LC50 values were determined by nonlinear regression analysis after converting the drug concentrations into log-X using Prism 5.0 software (GraphPad Software Inc.).

Luciferase and Bradford assays. Firefly luciferase activity in cell lysates was measured using the respective chemiluminescent assay kit (Promega), as manufacturer recommended, in a GloMax 20/20 single tube luminometer (Promega) for 10 s . Luciferase activities were normalized to the total protein amount determined using the Bradford assay reagent (Pierce).

Indirect immunofluorescence. Indirect immunofluorescence analysis of JFH1 NS5A was performed as described elsewhere (37). DNA was stained with propidium iodide (Sigma). Images were acquired with the Leica TCS-SP four-channel confocal microscope equipped with an argon ion laser and helium-neon laser.

Statistical analysis. In all diagrams, bars represent mean values of at least two independent experiments in triplicate. Error bars represent standard deviation. Only results subjected to statistical analysis using Student's t-test with $\mathrm{p} \leq 0.05$ were considered as statistically significant and presented. Statistical calculations were carried out using Excel Microsoft Office ${ }^{\circ}$

Theoretical simulations

Docking calculations were performed using the Glide SP v. 6.6 sampling algorithm and the corresponding GScore SP5 scoring function (Schrodinger Inc.) with a rigid representation of the protein. The structures of PA endonuclease and HCV polymerase with pdb codes 4AWF, 4KIL, 4M5U and 1GX6, respectively, were downloaded from PDB. Protein preparation was performed by the corresponding routine as implemented in Maestro (Schrodinger Inc.). Prior to calculations, the designed molecules were prepared in terms of correct protonation states, tautomerism and stereoisomerism using the LigPrep routine (Schrodinger Inc.). The theoretical LogP and $\mathrm{p} K_{\mathrm{a}}$ properties of the novel compounds were determined using Marvin and Calculator plugins (ChemAxon). Computational analysis of the PA endonuclease
solvation was performed using SZmap algorithm (Openeye Inc.). SZmap implements a semicontinuous solvation model for mapping the surface of the protein and identifies hydration sites of positive (unstable) and negative (stable) free energy. Characterization of water molecules according to their free energy permits rational design of high affinity ligands, which either displace unstable waters or replace stable waters by polar groups of similar capability for accommodating electrostatic interactions with the protein.

1. S. L. C. D. J. Kempf, Journal of Organic Chemistry, 1990 55, 1390-1394.
2. A. Stevaert, S. Nurra, N. Pala, M. Carcelli, D. Rogolino, C. Shepard, R. A. Domaoal, B. Kim, M. Alfonso-Prieto, S. A. Marras, M. Sechi and L. Naesens, Mol. Pharmacol., 2015, 87, 323-337.
3. A. Stevaert, R. Dallocchio, A. Dessì, N. Pala, D. Rogolino, M. Sechi and L. Naesens, J. Virol., 2013, 87, 10524-10538.

IV Copies of NMR spectra

${ }^{13} \mathrm{C}$ NMR of 24 (400 MHz , DMSO- d_{6})

[^0]

HSQC NMR of $24\left(400 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right)$

[^0]: $70 \begin{array}{lllllllllllll}165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

