Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2015

Supporting Information for Materials Horizons

'Pressure-Sensitive Adhesive Powder'

Syuji Fujii^{1*}, Shizuka Sawada¹, Saori Nakayama¹, Michael Kappl² Kazuyuki Ueno¹, Kohei Shitajima¹, Hans-Jürgen Butt² and Yoshinobu Nakamura^{1,3}

 ¹ Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology
5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan
² Polymer Physics Group, Max-Plank Institute for Polymer Research Ackermannweg 10, D-55128 Mainz, Germany
³ Nanomaterials Microdevices Research Center, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan

Figure S1. (a) Digital photograph, (b) transmission electron microscope and (c,d) scanning electron microscope images of $CaCO_3$ nanoparticles. Fig. S1(d) is a magnified image of Fig. S1(c).

Figure S2. Laser microscope images of a particle with a soft adhesive PBA core and a CaCO₃ hard nanoparticle shell morphology (a) before and (b) after application of shear stress. Laser microscope studies were conducted for the area of 700 μ m×500 μ m and surface roughness (*R*_a) of the adhesive materials are calculated using the Keyence software.

Figure S3. Scanning electron microscope cross-section image of cryo-fractured CaCO₃ nanoparticle-coated PBA particle.

Figure S4. Relationship between pressure applied to PSA materials and adhesion energy in tack measurement. Samples: Liquid marble PSA (yellow bar) before and (green bar) after application of shear stress, (blue bar) PBA latex film with a thickness of 45 μ m and (red bar) commercially available PSA tape (Scotch® MagicTM Tape 810)

Figure S5. Schematic illustrations of the test procedure and measurement component of the probe tack tester.

Gel-permeation chromatography (GPC)

GPC measurements were performed using an RI detector equipped with three TSKgel MultiporeHXL-M columns (Tosoh Co.) and a TSKGuardcolumn MP(XL) column (Tosoh Co.) at 5.3 MPa. Tetrahydrofuran was used as the eluent at a flow rate of 1.0 mL/min at 40 °C. M_w (GPC) of the sample polymer was calibrated with polystyrene and poly(methyl methacrylate) standards.

Transmittance measurements

Light transmittance percentages of dried adhesive liquid marbles before and after application of shear stress were recorded using a Shimadzu UV-1600 spectrophotometer with two 38-µm thick PET films (Lintec Co., Japan) as a reference. A dried adhesive liquid marble before and after application of shear stress was put between the PET films and pressed using a press (MP-WNL250, Toyoseiki, Japan) at room temperature to obtain a mean adhesive film thickness of 0.5 mm, which was determined with a dial thickness gauge (H-MT, Ozaki Mfg. Co., Ltd). Transmittance% values were determined at 500 nm.

Pycnometer

The solid-state density of the dried CaCO₃ nanoparticles was determined by helium pycnometry using a Micromeritics Accu Pyc II 1340 instrument.

3D laser scanning microscopy

Laser microscope studies were conducted using VK-9510 (Keyence, Japan) for the area of 700 mm×500 mm and surface roughness (R_a) of the adhesive materials are calculated using the Keyence software.

Acknowledgment. Ms. Nozomi Karyu of Osaka Institute of Technology is acknowledged for her assistances.