To be submitted to Metallomics

Supplementary Information

Biological effect of nitroimidazole derivative of polypyridyl Ru complex on cancer and endothelial cells

Olga Mazuryk^{*a*}, Franck Suzenet^{*b*}, Claudine Kieda^{*c*,*}, Małgorzata Brindell^{*a*,*}

Scheme S1. Schematic representation of the determination of retention of [Ru(dip)₂(bpy-NitroIm)]²⁺ in A549 and MLuMEC cell lines.

Fig. S1. Time dependence accumulation of $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (4 μ M) under normoxic (filled) and hypoxic (dashed) conditions in MLuEC FVB cells in medium with 2% serum.

Fig. S2. Time dependence accumulation of $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (2 and 4 μ M) under normoxic (filled) and hypoxic (dashed) conditions in A549 cells in medium without (S–) or with (S+, 2%) serum.

Fig. S3. Influence of serum addition on accumulation of $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (2 μ M) in A549 cells lines under normoxic conditions for various incubation time. The filled bars denote serum free (S–) while the dashed bars stand for the presence of serum (S+, 2%).

Fig. S4. Accumulation profile of $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (4µM) in 4T1 cells conducted in the presence of 2% serum under normoxic (red) and hypoxic (blue) conditions after 2 (A), 4 (B) and 24 h (C) incubation time. Black line stands for control.

Fig. S5. Concentration dependence of accumulated $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ in MLuEC FVB cells conducted in medium without serum under normoxic (filled bar) and hypoxic (dashed bar) conditions after 2 (blue), 4 (red) and 24 h (black) of incubation time.

Fig. S6. Confocal microscopy of A549 cells showing subcellular localization of $[Ru(dip)_2(bpy-NitroIm)]^{2+}$. (A, B, C) CellLight® ER-RFP was used to image endoplasmic reticulum (ER). (D, E, F) CellLight® Golgi-RFP was used to image Golgi. Green color denotes intrinsic emission of Ru complexes (8 μ M, 30 min of incubation at 37 °C), whereas

red color arises from organelle-specific dyes. The yellow color occurs due to the overlap of the green luminescence from the $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ and red emission from dyes, indicating co-localization. Ru complex primary localizes in ER. Scale bar is 20 μ m.

Fig. S7. Fluorescence imaging of MLuMEC FVB cells incubated with 6 μ M [Ru(dip)₂(bpy-NitroIm)]²⁺ for 1 h at 37 °C observed in fixed (A) and alive (B) cells.

Fig. S8. Effect of incubation temperature on $[Ru(dip)_2(bpy)]^{2+}$ (A) and $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (B) cellular uptake measured by flow cytometry. MLuMEC FVB cells were incubated with 2 μ M compounds for 1 h (black – white cells, blue – incubation at 4 °C, green – incubation at 20 °C, red – incubation at 37 °C).

Fig. S9. Effect of membrane fluidity on $[Ru(dip)_2(bpy)]^{2+}$ (A) and $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (B) cellular uptake measured by flow cytometry. MLuMEC FVB cells were incubated with 2 μ M compounds for 1 h with (red) or without (black) pre-incubation with M β CD.

Fig. S10. Fluorescence imaging of MLuMEC FVB cells incubated with 2 μ M [Ru(dip)₂(bpy-NitroIm)]²⁺ for 24 h at 37 °C. The dot-like staining pattern of labelling suggests accumulation of Ru complex in endosomes.

Fig. S11. Effect of depolarization of membrane with gramicidin on $[Ru(dip)_2(bpy)]^{2+}$ (A) and $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (B) cellular uptake measured by flow cytometry. MLuMEC FVB cells were incubated with 2 μ M compounds for 1 h with (red) or without (green) 30 min pre-incubation with 5 μ M gramicidin.

Fig. S12. Effect of hyperpolarization of membrane with valinomycin on $[Ru(dip)_2(bpy)]^{2+}$ (A) and $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (B) cellular uptake measured by flow cytometry. MLuMEC FVB cells were incubated with 2 μ M compounds for 1 h with (blue) or without (red) 30 min pre-incubation with 50 μ M valinomycin.

Fig. S13. DIC (C) and corresponded fluorescence (D) images of 4T1 cells after treatment with 8 μ M [Ru(dip)₂(bpy-NitroIm)]²⁺ for 24 h. (A) and (B) show control cells.

Fig. S14. The effect of [Ru(dip)₂(bpy-NitroIm)]²⁺ (A, C) and [Ru(dip)₂(bpy)]²⁺ (B, D) in the resistance of trypsin test for 4T1 cancer cells (A, B) and MLuMEC cells (C, D).

Fig. S15. The relative mRNA expression level of several genes (fold change) after 24 h incubation with $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (filled bars) and $[Ru(dip)_2(bpy)]^{2+}$ (dashed bars) under normoxic (A) and hypoxic (B) conditions in 4T1 cell line. The results presented in graphs are means \pm SEM of the experiments performed in three biological replicates. Student's t-test was used for statistical analyses: *p<0.05 was considered statistically significant.

Fig. S16. The relative mRNA expression level of several genes (fold change) after 24 h incubation with $[Ru(dip)_2(bpy-NitroIm)]^{2+}$ (filled bars) and $[Ru(dip)_2(bpy)]^{2+}$ (dashed bars) under normoxic (A) and hypoxic (B) conditions in MLuMEC cell line. The results presented in graphs are means \pm SEM of the experiments performed in three biological replicates. Student's t-test was used for statistical analyses: *p<0.05 was considered statistically significant.

To be submitted to Metallomics