Supplementary legends

Supplementary Figure 1. Sequence alignments among *E. faecalis* members and archetypes involved in Zn homeostasis in different bacterial species (Id code Supplementary Table 1). Asterisks indicate conserved residues involved in Zn binding, black: identical residues, grey: similar residues.

Supplementary Figure 2. Effect of Zn, TPEN and Cu supplementation on *E. faecalis* growth. Cellular growth curves at increasing concentration of $ZnCl_2$ (A), TPEN (B) and CuSO₄ (C). Error bars = standard deviation (SD) values. Asterisks = significant differences. (Mann-Whitney test, p<0.05).

Supplementary Figure 3. Relative mRNA abundance of *fief* exposed to Zn, TPEN and Cu in **A.** WT and **B.** Δzur strains. Light grey bars indicate the fold change (log₂) in transcript abundance between WT and Δzur strains growing in the control media. Black, white and dark grey bars indicate fold changes in transcript abundance between Δzur strain exposed to 0.5 mM ZnCl₂, 5 μ M TPEN or 0.5 mM CuSO₄ and the Δzur growing in control media (REST test, p<0.05).

Supplementary Figure 4. Effect of Zn and Cu supplementation on WT and Δzur growth. Cellular growth curves at increasing concentration of ZnCl₂ (A) or CuSO₄ (B). Error bars = standard deviation (SD) values. Asterisks = significant differences. (Mann-Whitney test, p<0.05).

Supplementary Table 1. Proteins involved in bacterial zinc homeostasis

Supplementary Table 2. Predicted transcriptional regulatory network activated by zinc in *E. faecalis*.

Supplementary Table 3. Gene-specific primers used in qPCR and Δzur mutant construction.