Supplementary Information

Metal Ions Modulate the Conformation and Stability of G-Quadruplex with or without a Small-Molecule Ligand

Huiru Lu,^{‡ab} Shenghui Li,^{‡b} Jing Xia,^b Jun Chen,^a Jinchao Zhang,^{*b} Yan Huang,^c Xiaoxiao Liu,^a Hai-chen Wu,^a Yuliang Zhao,^a Zhifang Chai^a and Yi Hu^{*a}

^a CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China. E-mail: huyi@ihep.ac.cn; Fax: +86-10-88236730; Tel: + 86-10-88236730.

^b Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China. E-mail: jczhang6970@163.com; Fax: +86-312-5079005; Tel: +86-312-5079005.

^c Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China

‡ These authors contributed equally to this study.

Supplementary methods

Absorption spectra study with compound 4

The absorption titration of compound **4** was performed by using a fixed concentration (1 μ M) of the ligand in buffer (10 mM Tris-HCl + 100 mM KCl, pH 7.4) and increasing concentrations of the G-quadruplex. The solutions were mixed and incubated for 2 h at room temperature before absorption spectra were recorded. UV absorption spectra were obtained by using a Shimadzu UV-3600 spectrophotometer. UV absorption spectra showed that after adding G-quadruplex, a hypochromic effect as well as a redshift of approximately 7 nm of the characteristic absorption band of compound **4** occurred (Fig. S5), indicating the intercalation of the compound into G-quadruplex. The binding constant of compound **4** with G-quadruplex was 4.84×10^8 M⁻¹. The binding constant has been calculated from the equation.¹

 $C_{G4}/(\epsilon_{a}-\epsilon_{f})=C_{G4}/(\epsilon_{b}-\epsilon_{f})+1/\big(\textit{K}(\epsilon_{b}-\epsilon_{f})\big)$

Where ε_a corresponds to $A_{obsd}/C_{compound 4}$, ε_f corresponds to extinction coefficient for the free compound 4, ε_b corresponds the extinction coefficient for the compound 4 complex in the fully bound form.

References

^{1.} A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, *J. Am. Chem. Soc.*, 1989, **111**, 3051-3058.

Supplementary Figures

Fig. S1 CD spectra of Na⁺-induced G-quadruplex (1 μ M) with increasing concentrations of Ca²⁺, Cr³⁺, Cs⁺, K⁺, Mg²⁺, Mn²⁺, or Zn²⁺ in 50 mM NaAc and 10mM Tris-HAc buffer, pH 7.4.

Fig. S2 CD spectra of Na⁺-induced G-quadruplex $(1 \ \mu M)$ with increasing concentrations of Ag⁺, Al³⁺, Cd²⁺, Co²⁺, Fe²⁺, Hg²⁺, Ni²⁺, or Pb²⁺ in 50 mM NaAc and 10mM Tris-HAc buffer, pH 7.4.

Fig. S3 CD spectra of Na⁺-induced G-quadruplex (1 μ M) with 100 μ M of Al³⁺, Cd²⁺, Co²⁺, or Fe²⁺ and increasing concentrations of Ba²⁺ in 50 mM NaAc and 10 mM Tris-HAc buffer, pH 7.4.

Fig. S4 CD spectra of Na⁺-induced G-quadruplex (1 μ M) with Ag⁺, Hg²⁺, or Ni²⁺ and increasing concentrations of Ba²⁺ in 50 mM NaAc and 10 mM Tris-HAc buffer, pH 7.4.

Fig. S5 UV absorption spectra of compound 4 (1 μ M) with increasing concentrations of G-quadruplex.

Fig. S6 CD spectra of Na⁺-induced G-quadruplex with compound **4** (3 μ M) and increasing concentrations of Ag⁺, Al³⁺, Ba²⁺, Cd²⁺, Co²⁺, Fe²⁺, Hg²⁺, or Ni²⁺ in 50 mM NaAc and 10 mM Tris-HAc buffer, pH 7.4.

Fig. S7 CD spectra of Na⁺-induced G-quadruplex in the presence of compound **4** (3 μ M) and 100 μ M of Al³⁺, Cd²⁺, Co²⁺, Fe²⁺, Ni²⁺, or 10 μ M of Ag⁺ or Hg²⁺, and increasing concentrations of Ba²⁺ in 50 mM NaAc and 10 mM Tris-HAc buffer, pH 7.4.

Fig. S8 CD spectra of Na⁺-induced G-quadruplex in the presence of compound **4** (3 μ M) and 0.1, 1 or 10 μ M of Cu²⁺, with increasing concentrations of Ba²⁺ in 50 mM NaAc and 10 mM Tris-HAc buffer, pH 7.4.

Fig. S9 CD spectra of Na⁺-induced G-quadruplex in the presence of compound **4** (3 μ M) and 100 μ M of Al³⁺, Cd²⁺, Co²⁺, Fe²⁺, Ni²⁺, or 10 μ M of Ag⁺ or Hg²⁺, with increasing concentrations of EDTA in 50 mM NaAc and 10 mM Tris-HAc buffer, pH 7.4.