Supplementary Table 1. Effect of metals on ZinT thermal denaturation profiles tested by differential scanning fluorimetry.

Metal	Counter-ion	[Metal] (µM)	Δ <i>T</i> m (°C)	
			1ºC/min	1°C/10 sec
Ba ²⁺	Cl	10		$+0.2\pm0.6$
Ca ²⁺	Cl	10 500		+0.4±0.7 +0.5+0.1
Cd^{2+}	Cl	10 500		+4.5±0.2 +7.0±0.3
Co ²⁺	Cl	10 500		+4.2±0.0 +8.3±0.1
Cr ³⁺	Cl	10 500		+0.1±0.3 +0.7±0.3
Cu ²⁺	Cl	10 100 500	+9.6±0.4 +5.7±0.1 +4.2+0.5	+5.2±0.2
Fe ³⁺	Cl	10 500	17.2±0.3	+0.6±0.3 +0.5±0.2
Hg ²⁺	Cl	10 100 500	$+6.1\pm0.3$ +9.7 ±0.1 +7.4 ±0.1	
Mg ²⁺	Cl	10 500		+0.7±0.5 +0.6±0.1
Mn ²⁺	Cl	10 100 500	$+2.7\pm0.0$ +2.8±0.1 +2.6±0.1	+0.5±0.0 +0.9+0.0
Ni ²⁺	SO ₄ ²⁻	10 100 500	$+8.5\pm0.3$ +11.3±0.1	+4.7±0.3
Pr ³⁺	CH ₃ COO ⁻	10 500	+10.0±0.1	$+8.7\pm0.0$ +0.5±0.7 +0.6±0.1
Sr ²⁺	Cl	10 500		+0.6±0.0 +8.7±0.0
Y ³⁺	Cl	10 500		+0.5±0.3 -0.1±0.1
Zn ²⁺	SO4 ²⁻	10 100 500	$+13.2\pm0.2+13.7\pm0.1+2.4\pm0.4+12.4\pm0.2$	+10.8±0.3 +11.8±0.3

Metal	Concentration (µM)
Cobalt (Co ²⁺)	100 250* 400 500* 1000
Mercury (Hg ²⁺)	1 2.5 10 15* 20* 25 40 50
Cadmium (Cd ²⁺)	25 100 250 300* 500 *
Copper (Cu ²⁺)	100 500 1000 2000 3000* 5000
Nickel (Ni ²⁺)	100 500 1000* 1250 2000
Zinc (Zn ²⁺)	100 200 400 500 600* 800* 1000

Supplementary Table 2 - Metal concentrations supplemented into growth medium of $\Delta zinT$ and $\Delta galT$ Escherichia coli strains.

* - metal concentrations presented in metal sensitivity assays (Figures 2-4 and Supplementary Figures S2-S4).

Supplementary	Table 3. Data	collection and	processing	statistics
---------------	---------------	----------------	------------	------------

Beamline	ESRF ID 29		
Detector	PILATUS 6M		
Wavelength (Å)	1.0000		
Data Processing	XDS		
Space Group	$P 4_1 2_1 2$		
Unit cell parameters (Å)	a=62.01, c=149.72		
Resolution (Å)	45.8 - 1.79 (1.85 - 1.79)		
Nr. Observations	191493 (11611)		
Unique reflections	28379 (2634)		
Completeness (%)	99.6 (97.0)		
Multiplicity	6.7 (4.4)		
R-merge $(\%)^{a}$	7.4 (57.6)		
R-pim (%) ^b	3.0 (27.3)		
R-meas (%) c	8.0 (64.3)		
<i o(i)=""></i>	15.6 (1.7)		
$\operatorname{CC}^{\frac{1}{2}d}$	0.999 (0.824)		
Wilson Plot B	24.6		
Z ^e	2		
\mathbf{V}_{m}	2.3		
Estimated Solvent Content (%)	46		

^{*a*} R-merge = merging R-factor, $(\Sigma_{hkl} \Sigma_i | I_i(hkl) - \langle I(hkl) \rangle) / (\Sigma_{hkl} \Sigma_i I(hkl)) \times 100\%$.

^{*b*} R-pim = precision independent R-factor, $\Sigma_{hkl} [1/(N_{hkl}-1)]^{1/2} \Sigma_i |I_i(hkl) - \langle I(hkl) \rangle | \Sigma_{hkl} \Sigma_i I_i (hkl)$, where *I* is the observed intensity, $\langle I \rangle$ is the average intensity of multiple observations from symmetry-related reflections, and N_{hkl} is their redundancy. (Diederichs and Karplus, 1997);

^c R-meas = redundancy independent R-factor, $\Sigma_{h} [N_{hkl}/(N_{hkl}-1)]^{1/2} \Sigma_{i} |I_{i}(hkl) - \langle I(hkl) \rangle | / \Sigma_{hkl} \Sigma_{i} I_{i}(hkl) \times 100\%$. (Diederichs and Karplus, 1997);

^d CC^{1/2} is the correlation coefficient between two randomly calculated half-sets (Karplus et al, 2012)

^e Nr. monomers in the asymmetric unit according to Matthews coefficient (Matthews, 1968)

References

(Diederichs and Karplus, 1997) - Diederichs, Kay, and P. Andrew Karplus. "Improved R-factors for diffraction data analysis in macromolecular crystallography." *Nature structural biology* 1997, 4(4): 269-275.

(Karplus et al, 2012) - Karplus, P. Andrew, and Kay Diederichs. "Linking crystallographic model and data quality." *Science* 2012, 336(6084): 1030-1033.

(Matthews, 1968) - Matthews, Brian W. "Solvent content of protein crystals." *Journal of molecular biology* 1968, 33(2): 491-497.

Resolution limits (Å)	47.75 - 1.79 (1.85 - 1.79)
R-factor (%) a	17.4 (26.7)
nr.reflections	28294 (2536)
Free R-factor (%) ^b	20.8 (32.6)
nr. reflections	1433 (141)
Overall coordinate error estimate (Å) c	0.17
Model composition	
non-hydrogen protein atoms	1775
Nº mol in asymmetric unit	1
Zinc atoms	8
Solvent molecules	181
Model r.m.s. deviations from ideality	
Bond lengths (Å)	0.012
Bond angles (°)	1.318
Chiral centers (Å ³)	0.051
Planar groups (Å)	0.006
Ramachandran plot statistics. Residues in:	
most favored regions (%)	97.4
allowed regions (%)	2.6
disallowed regions (%)	0
Rotamers ouliers (%)	2.23
C^{β} outliers	0
Clash score	1.3
Mean B values $(\mathring{A}^2)^d$	Chain A
protein main-chain	31.92
protein side-chain	40.34
Zinc (acetate)	43.03 (38.17)
solvent	38.36

Supplementary Table 4. Final refinement statistics.

^{*a*} R-factor = $\Sigma_{hkl} ||F_o| - |F_c|| / \Sigma_{hkl} |F_o|$, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively; ^{*b*} Free R-factor is the cross-validation R-factor computed from a randomly chosen subset of 5% of the total number of reflections, which were not used during the refinement.; ^{*c*} Maximum-likelihood estimate with PHENIX; ^{*d*} Calculated from equivalent isotropic B values, including the TLS contribution for the protein atoms.