Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Anasori et al.

Supplementary Information

Control of Electronic Properties of 2D Carbides (MXenes) by Manipulating Their Transition Metal Layers

Babak Anasori^{1,2}, Chenyang Shi³, Eun Ju Moon¹, Yu Xie⁴, Cooper A. Voigt¹, Paul R. C. Kent^{4,5}, Steven J. May¹, Simon J. L. Billinge^{3,6}, Michel W. Barsoum¹, Yury Gogotsi^{1,2*}
 ¹Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, United States
 ²A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, United States
 ³Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States

⁴Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37381, United States ⁵Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37381, United States ⁶Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973,

United States

*Corresponding author: Y. Gogotsi (gogotsi@drexel.edu) Tel.: +1-215-895-6446 Fax: +1-215-895-1934

I. X-ray diffraction results

X-ray diffraction (XRD) was carried out on the as filtered delaminated $d-Mo_2TiC_2T_x$ and $d-Mo_2Ti_2C_3T_x$ films using a Rigaku Smartlab (Tokyo, Japan) diffractometer with Cu-Ka radiation (40 KV and 44 mA); step scan 0.02°, 3°–65° 2 theta range, step time of 1 s, 10x10 mm² window slit.

Figure S1. XRD patterns of the delaminated $d-Mo_2TiC_2T_x$ (bottom, blue) and $d-Mo_2Ti_2C_3T_x$ (top, red).

Anasori et al.

II. Undistorted structures of $Mo_2TiC_2T_x$ and $Mo_2Ti_2C_3T_x$

Figure S2 represents the undistorted $Mo_2TiC_2T_x$ and $Mo_2Ti_2C_3T_x$ structures based on numbers presented in Table 2. *c* lattice parameters were calculated using the XRD results (Figure S1). Large spacing between MXene layers shows a large number of intercalant layers, possibly up to 3 layers of water.

Figure S2. Structures of $Mo_2TiC_2T_x$ and $Mo_2Ti_2C_3T_x$. T_x represents the surface terminations (O, F and OH) depicted in blue.

Anasori et al.

II. Resistivity vs temperature fitting for Mo₂TiC₂T_x

Figure S3 shows the fitting results of the temperature dependent resistivity to the equation, $\rho = \rho_0 exp^{\frac{1}{10}}(T_0/T)^m$, where ρ_0 is a prefactor. The exponent, *m*, is indicative of the conduction model with simple activation, Efros-Shklovskii (E-S) variable range hopping (VRH), 2D VRH, and 3D VRH yielding m = 1, 0.5, 0.33, and 0.25, respectively.^{1,2} Additionally, the resistivity is fit to a power-law model [Fig. S3(d)], $\rho = AT^p$, where *A* and *p* are constants. The power-law dependence is the only model that reproduces the data, albeit over a limited 20 – 100 K temperature range. The physical origin of the power-law behavior is unclear at this time.

Figure S3. Resistivity fitting of a ML-Mo₂TiC₂T_x over the temperature range from 20 to 100 K in (a) 3D VRH, (b) 2D VRH, (c) E-S VRH, (d) power law, and (e) simple activated models.

III. Detailed DFT calculated results

Figure S4 represents the crystal structure of monolayer Mo₂TiC₂O₂, which was used for magnetic simulations.

Figure S4. Top (a) and side (b) views of $Mo_2TiC_2O_x$. Mo atoms in the upper layer are in red, and that in lower layer are in blue. Other atoms are shown in black.

Table S1 shows the considered magnetic orderings in our simulations.

Туре	1	2	3	4	5	6	7	8	
NM	0	0	0	0	0	0	0	0	
FM	+	+	+	+	+	+	+	+	
AFM1	+	+	+	+	-	-	-	-	
AFM2	+	+	-	-	+	+	-	-	
AFM3	+	+	-	-	-	-	+	+	
AFM4	+	-	-	+	+	-	-	+	
AFM5	+	-	-	+	-	+	+	-	
AFM6	+	-	+	-	+	-	+	-	
AFM7	+	-	+	-	-	+	-	+	

 Table S1. Considered magnetic orderings. +, spin up; -, spin down.

The corresponding total energies of these magnetic states are shown in Table S2.

	NM	FM	AFM1	AFM2	AFM3	AFM4	AFM5	AFM6	AFM7
Mo ₂ TiC ₂ (OH) ₂	0.000	-0.384	-0.461	-0.673	-0.567	-0.444	-0.677	-0.673	-0.567
Mo ₂ TiC ₂ O ₂	0.000	-0.186	-0.196	-0.387	-0.386	-0.395	-0.385	-0.385	-0.306
$Mo_2TiC_2F_2$	0.000	-0.342	-0.535	-0.521	-0.401	-0.402	-0.583	-0.521	-0.402
Mo ₂ TiC ₂ (OH) _{1.5} F _{0.5}	0.000	-0.044	-0.092	-0.184	-0.178	-0.168	-0.146	-0.167	-0.173
Mo ₂ TiC ₂ (OH)F	0.000	-0.095	-0.347	-0.410	-0.304	-0.334	-0.410	-0.419	-0.304
$Mo_{2}TiC_{2}O_{1.5}F_{0.5}$	0.000	-0.368	-0.245	-0.560	-0.560	-0.560	-0.552	-0.560	-0.568
Mo ₂ TiC ₂ OF	0.000	-0.161	-0.389	-0.366	-0.235	-0.389	-0.416	-0.366	-0.412
$Mo_2Ti_2C_3(OH)_2$	0.000	0.070	0.117	-0.239	-0.237	-0.235	-0.258	-0.248	-0.312
$Mo_2Ti_2C_3O_2$	0.000	-0.201	-0.223	-0.451	-0.450	-0.462	-0.449	-0.451	-0.450
$Mo_2Ti_2C_3F_2$	0.000	-0.962	-1.036	-1.189	-1.223	-1.185	-1.213	-1.185	-1.219
$Mo_2Ti_2C_3(OH)_{1.5}F_{0.5}$	0.000	-0.051	-0.182	-0.151	-0.179	-0.181	-0.173	-0.193	-0.179
Mo ₂ Ti ₂ C ₃ (OH)F	0.000	-0.242	-0.105	-0.267	-0.250	-0.216	-0.213	-0.252	-0.254
$Mo_{2}Ti_{2}C_{3}O_{1.5}F_{0.5}$	0.000	-0.117	-0.082	-0.121	-0.119	-0.083	-0.120	-0.119	-0.129
Mo ₂ Ti ₂ C ₃ OF	0.000	-0.130	0.321	-0.148	-0.137	0.008	0.011	0.006	0.006

Table S2. Calculated total energies (eV/f.u.) of Mo-MXenes with different magnetic ordering. The lowest total energy of each MXene is listed in bold (reference to NM state).

The lattice parameters of the non-magnetic and most stable magnetic states are listed and compared with experimental data. The predicted values are slightly bigger due to the GGA and Hubbard U approximations. The overall agreement is good.

MXene		а	r(Mo-C)	r(C-Ti)	r(Mo-O/F)
Mo ₂ TiC ₂ T _x	Exp.	2.935	2.022	2.259	2.142
Mo ₂ TiC ₂ (OH) ₂	NM	3.078	2.171	2.218	2.247
	AFM5	3.172	2.209	2.252	2.268
Mo ₂ TiC ₂ O ₂	NM	3.040	2.120	2.189	2.150
	AFM4	3.135	2.205	2.193	2.147
Mo ₂ TiC ₂ F ₂	NM	3.039	2.161	2.210	2.254
	AFM5	3.198	2.178	2.223	2.272
Mo ₂ TiC ₂ (OH) _{1.5} F _{0.5}	NM	3.063	2.138	2.219	2.226
	AFM2	3.099	2.196	2.221	2.250
Mo ₂ TiC ₂ (OH)F	NM	3.061	2.116	2.192	2.224
	AFM6	3.150	2.182	2.219	2.237
Mo ₂ TiC ₂ O _{1.5} F _{0.5}	NM	3.067	2.156	2.220	2.156
	AFM7	3.166	2.218	2.228	2.119
Mo ₂ TiC ₂ OF	NM	3.039	2.183	2.181	2.230
	AFM5	3.076	2.221	2.199	2.218
$Mo_2Ti_2C_3T_x$		2.959	2.130	2.111	1.916
Mo ₂ Ti ₂ C ₃ (OH) ₂	NM	3.091	2.158	2.121	2.212
	AFM7	3.151	2.184	2.177	2.274
Mo ₂ Ti ₂ C ₃ O ₂	NM	3.071	2.175	2.182	2.129
	AFM4	3.125	2.202	2.197	2.150
$Mo_2Ti_2C_3F_2$	NM	3.058	2.127	2.189	2.281
	AFM3	3.149	2.186	2.220	2.249
Mo ₂ Ti ₂ C ₃ (OH) _{1.5} F _{0.5}	NM	3.081	2.140	2.183	2.242
	AFM6	3.105	2.144	2.195	2.259
Mo ₂ Ti ₂ C ₃ (OH)F	NM	3.083	2.103	2.157	2.189
	AFM2	3.104	2.130	2.157	2.222
$Mo_2Ti_2C_3O_{1.5}F_{0.5}$	NM	3.085	2.083	2.139	2.158
	AFM7	3.113	2.091	2.157	2.137
Mo ₂ Ti ₂ C ₃ OF	NM	3.079	2.099	2.138	2.134
	AFM2	3.125	2.113	2.167	2.136

Table S3. Calculated lattice parameters (Å) compared with experiments.

Figure S5. Spatial spin density distributions (up-down) of (a-g) $Mo_2TiC_2T_x$ and (h-n) $Mo_2Ti_2C_2T_x$. Yellow - spin up; blue - spin down.

Anasori et al.

Figure S6. Calculated projected density of states for $Mo_2TiC_2T_x$ (a-g) and $Mo_2Ti_2C_3T_x$ (h-n) MXenes.

References

- Mott, N. Journal of Non-Crystalline Solids 1968, 1, 1-17.
 Efros, A.; Shklovskii, B. Journal of Physics C: Solid State Physics 1975, 8, L49.