Supporting Information

A simple pincer-type chemosensor for reversible fluorescence turn-on detection of zinc ion at physiological pH range

Qi Lin*, Yi Cai, Qiao Li, Jing Chang, Hong Yao, You-Ming Zhang and Tai-Bao Wei*

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China

General procedure for UV-vis experiments.

The solution of sensor **Y** (2.0×10^{-4} M) in DMSO was prepared and stored in dry atmosphere. The solution was used for all spectroscopic studies after appropriate dilution. Solutions of 1.0×10^{-2} mol·L⁻¹ TBA salts of the respective anions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, ClO₄⁻ and HSO₄⁻) and the sodium salts of CN⁻, and SCN⁻ were prepared in H₂O.Solutions of metal ions were prepared from the perchlorate salts of Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Zn²⁺ and Mg²⁺. Any changes in the UVvis spectra of sensor **Y** were recorded upon the addition of salts while keeping the concentration of sensor **Y** (2.0×10^{-5} M) in all experiments.

General procedure for fluorescence experiments.

The solution of sensor \mathbf{Y} (2.0×10⁻⁴ M) in DMSO was prepared and stored in dry atmosphere. The solution was used for all spectroscopic studies after appropriate dilution. Solutions of 1.0×10⁻² mol·L⁻¹ TBA salts of the respective anions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻ and ClO₄⁻) and the sodium salts of CN⁻ and SCN⁻ were prepared in H₂O.Solutions of metal ions were prepared from the perchlorate salts of Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Zn²⁺ and Mg²⁺. The fluorescence spectra were obtained by excitation at 355 nm. The excitation slit widths were 3 nm and emission slit widths were 5 nm, respectively. Any changes in the Fluorescence spectra of sensor \mathbf{Y} were recorded upon the addition of salts while keeping the concentration of sensor \mathbf{Y} (2.0×10⁻⁵ M) in all experiments.

General procedure for ¹H NMR experiments.

For ¹H NMR, sensor **Y** was prepared in DMSO- d_6 . All solutions were mixed directly in NMR tube.

Fig. S1. Partial ¹H NMR and spectra of compound Y in DMSO- d_6 .

The characterization of Y by ESI-MS

The $[\mathbf{Y}+\mathbf{H}^+]^+$ peak appeared at 333.1727 (m/z_{calcd}=333.3592). which is coinciding well with that for the species $[C_{18}H_{16}N_6O+H^+]^+$ (m/z_{calcd}=333.3592).

Generic Display Report

Fig. S2. ESI-MS spectrum of compound Y.

The Job's plot of Y to Zn²⁺.

The plot indicating the 1:1 stoichiometry for Zn^{2+} -Y clearly.

Fig. S3. The Job's plot examined between Y and Zn^{2+} .

General procedure for ¹H NMR experiments.

For ¹H NMR titrations, sensor **Y** was prepared in DMSO- d_6 , Zn²⁺ was prepared in DMSO- d_6 . First of all, only sensor **Y** in DMSO- d_6 were added into NMR tube, and then added Zn²⁺ ion at 0.1, 0.5, 1.0, 2.0, 5.0 equiv. sequentially. All solutions were mixed directly in NMR tube.

Fig. S4. Partial ¹H NMR and spectra of compound Y in DMSO-*d*₆ upon addition of

 Zn^{2+} .

The association constant for Zn²⁺-Y complexation.

The association constants (Ka) of Zn^{2+} -Y were calculated based on the titration curve of the probes with ions. Association constants were determined by a nonlinear least squares fit of the data with the following equation as referenced elsewhere. Where x is I-Io/Imax-Io, y is the concentration of metal ions, a is the association constant, and b is the concentration of sample.

$$y = x/[2 \times a \times b \times (1-x)^2] + (x \times b)/2$$

The quantum yield of Y and Zn²⁺-Y.

The quantum yield of sensor **Y** and Zn^{2+} -**Y** were determined according to the literature. Where Φ is fluorescence quantum yield, I is the integrated fluorescence

intensity, n is the refractive index of solvent, and A is the optical density (absorption).

The subscript R refers to the reference of quinine sulfate.

$$\Phi = \Phi_R \frac{I}{I_R} \frac{A_R}{A} \frac{n^2}{n_R^2}$$

The UV-vis spectrum experiments of Y to Zn²⁺.

Fig. S5. The UV-vis spectrums of compound Y and $Y+Zn^{2+}$.

The detection limit of Y to Zn²⁺.

The detection limit of fluorescence spectra result of the analysis as follows:

Linear Equation: Y = 337.709 X + 51.67624

 $R^2 = 0.979$

 $S = 3.37 \times 10^8$

$$\delta = \sqrt{\frac{\sum (F_0 - \overline{F}_0)^2}{N-1}} = 1.563 \text{ (N=19)}$$

K = 3

 $LOD = 3 \times 1.563 / 5.77 \times 10^9 = 1.39 \times 10^{-8} M$

Fig. S6. Plot of the intensity at 524 nm for a mixture of probe Y and Zn^{2+} in

DMSO/H₂O (v/v=9/1) pH=7.2 buffer system of HEPES (λ_{ex} = 355 nm) Immunity test of Y to Zn²⁺.

Fig.S7. Fluorescence intensity changes of **Y** ($c = 2 \times 10^{-5}$ M) upon addition of 10 equiv. of Zn²⁺ ($c = 4 \times 10^{-3}$ M) and 10 equiv. of various interference anions ($c = 4 \times 10^{-3}$ M) (Left to right 1-12 is Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺ and Mg²⁺). Blue bars represent the responses of **Y** to the ions of interest. Yellow

bars represent the subsequent addition of Zn^{2+} to **Y**.

Fig. S8. IR spectrums of compound Y and $Y+Zn^{2+}$.

The time response experiments of Y to Zn²⁺ in different water ratio.

Fig. S9. Fluorescence intensity at 524 nm for Y (c= 2.0×10^{-5} M) in a mixture of DMSO/H₂O (v/v=9/1; 8/2; 7/3; 6/4) solution pH=7.2 buffer system of HEPES after

addition of 10 equivalents of Zn^{2+} (c=4×10⁻³ M).