Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

## <Journal Name>New Journal of Chemistry

## **Supporting Information**

Triazine-polycarboxylate acids complexes: synthesis, crystal structure and photocatalytic activity

Zhi Nan Wang<sup>a</sup>, Xuan Wang<sup>a, b</sup>, Si Yue Wei<sup>a</sup>, Ji Xiao Wang<sup>a</sup>, Feng Ying Bai<sup>c</sup>, Yong Heng Xing<sup>\*a</sup> and Li Xian Sun<sup>d</sup>

a College of Chemistry and Chemical engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China.

b Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang City, 110016, P.R. China.

c College of Life Science, Liaoning Normal University, Dalian 116029, P.R. China.

d Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P.R. China

\* E-mail address: xingyongheng2000@163.com; Tel: 0411-82156987

## Scheme, Figure and Table titles:

Table S1. Crystallographic data and the structure refinement of complex 3

Table S2. Selected bond lengths (Å) and angles (°) for the complexes 1, 2 and 4

Table S3. Hydrogen bonds (Å) and angles ( <sup>°</sup>) of the complexes 1, 2 and 4\*

Fig. S1. IR absorption spectrum of complex 1

Fig. S2. IR absorption spectrum of complex 2

Fig. S3. IR absorption spectrum of complex 3

Fig. S4. IR absorption spectrum of complex 4

Fig. S5. UV-vis absorption spectrum of complex 1

Fig. S6. UV-vis absorption spectrum of complex 2

Fig. S7. UV-vis absorption spectrum of complex 3

Fig. S8. UV-vis absorption spectrum of complex 4

Fig. S9. TG curves of the complex 1

Fig. S10. TG curves of the complex 2

Fig. S11. TG curves of the complex 3

Fig. S12. TG curves of the complex 4

Fig. S13. The view of 1D chain of complex 1 (All H atoms are omitted for clarity)

Fig. S14. The view of 1D chain of complex 2 (All H atoms are omitted for clarity)

- **Fig. S15.** The view of 1D chain via hydrogen bonds in complex **4** (All H atoms expert for the hydrogen bonds are omitted for clarity; Symmetry codes: #4: -1+x, 1+y, z)
- Fig. S16. The view of 3D network structure via hydrogen bonds in complex 4 (All H atoms expert for the hydrogen bonds are omitted for clarity; Symmetry codes: #1: 2-x, -y, 1-z; #2: 1+x, -1+y, z; #3: 1+x, y, z; #4: -1+x, 1+y, z; #5: 1-x, 1-y, 1-z)

| Complex                                | 3               |
|----------------------------------------|-----------------|
| Formula                                | C32H36N10O8Zn   |
| M (g'mol <sup>-1</sup> )               | 754.08          |
| Crystal system                         | Triclinic       |
| Space group                            | P-1             |
| a (Å)                                  | 9.491(2)        |
| b (Å)                                  | 13.025(3)       |
| c (Å)                                  | 16.033(3)       |
| α(°)                                   | 106.161(4)      |
| β(° )                                  | 91.155(4)       |
| γ(°)                                   | 109.772(3)      |
| V(Å3)                                  | 1777.1(6)       |
| Z                                      | 2               |
| Dcalc(g.cm-3)                          | 1.409           |
| Crystal size (mm)                      | 0.44×0.23×0.12  |
| F(000)                                 | 784             |
| M(Mo Kα) (mm-1)                        | 0.755           |
| θ(°)                                   | 2.30-22.80      |
| Reflections collected                  | 7357            |
| Independent reflections(I> $2\sigma$ ) | 4757(2724)      |
| Parameters                             | 469             |
| Δ(ρ)(e Å-3)                            | 0.346and-0.283  |
| Goodness of fit (GOF) on F2            | 1.027           |
| Ra                                     | 0.0632(0.1205)b |
| wRa2                                   | 0.1300(0.1570)b |

Table S1. Crystallographic data and the structure refinement of complex 3

\*<sup>a</sup>R= $\Sigma |F_0-F_C|/\Sigma |F_0, wR_2=\{\Sigma [w(F_0^2-F_C^2)^2]/\Sigma [w(F_0^2)^2]\}^{1/2}; [F_0>4\sigma(F_0)].$ <sup>b</sup>Based on all data.

| Complex 1        |            |                   |            |
|------------------|------------|-------------------|------------|
| Zn-O(1)          | 1.940(2)   | Zn-O(2)           | 1.954(3)   |
| Zn-N(1)          | 2.052(2)   | Zn-N(3)           | 2.215(3)   |
| Zn-N(2)          | 2.229(2)   |                   |            |
| O(1)-Zn-O(2)     | 99.60(11)  | O(1)-Zn-N(1)      | 136.35(11) |
| O(2)-Zn-N(1)     | 124.05(11) | O(1)-Zn-N(3)      | 100.49(11) |
| O(2)-Zn-N(3)     | 101.53(12) | N(1)-Zn-N(3)      | 73.15(10)  |
| O(1)-Zn-N(2)     | 96.95(11)  | O(2)-Zn-N(2)      | 105.80(11) |
| N(1)-Zn-N(2)     | 72.82(10)  | N(3)-Zn-N(2)      | 144.43(10) |
| Complex 2        |            |                   |            |
| Co-O(1)          | 1.986(5)   | Co-N(1)           | 2.029(6)   |
| Co-O(4)#1        | 2.015(5)   | Co-N(2)           | 2.196(7)   |
| Co-N(3)          | 2.125(7)   |                   |            |
| N(1)-Co-N(3)     | 75.6(3)    | O(4)#1-Co-N(3)    | 108.1(2)   |
| O(1)-Co-N(1)     | 129.6(2)   | O(1)-Co-N(2)      | 96.6(3)    |
| O(1)-Co-O(4)#1   | 98.6(2)    | N(1)-Co-N(2)      | 73.9(3)    |
| N(1)-Co-O(4)#1   | 130.3(2)   | O(4)#1-Co-N(2)    | 91.0(2)    |
| O(1)-Co-N(3)     | 103.6(2)   | N(3)-Co-N(2)      | 149.4(2)   |
| Complex 4        |            |                   |            |
| Cu(1)-O(1)       | 1.940(2)   | Cu(1)-O(1W)       | 1.971(3)   |
| Cu(1)-N(2)       | 2.004(3)   | Cu(1)-N(1)        | 2.024(2)   |
| Cu(1)-O(2W)      | 2.306(2)   |                   |            |
| O(1)-Cu(1)-O(1W) | 89.81(9)   | O(1)-Cu(1)-N(2)   | 96.34(10)  |
| O(1W)-Cu(1)-N(2) | 171.35(10) | O(1)-Cu(1)-N(1)   | 171.61(10) |
| O(1W)-Cu(1)-N(1) | 93.44(10)  | N(2)-Cu(1)-N(1)   | 79.66(10)  |
| O(1)-Cu(1)-O(2W) | 91.66(9)   | O(1W)-Cu(1)-O(2W) | 88.12(10)  |
| N(2)-Cu(1)-O(2W) | 97.74(10)  | N(1)-Cu(1)-O(2W)  | 96.18(10)  |

Table S2. Selected bond lengths (Å) and angles (°) for the complexes  $1,\,2$  and 4

| D–H ···A                            | <i>d</i> (D−H)/ Å | d(H ···A)∕ Å | $d(D \cdots A) / \mathring{A}$ | $\angle D$ –H ···A/ ° |
|-------------------------------------|-------------------|--------------|--------------------------------|-----------------------|
| Complex 1                           |                   |              |                                |                       |
| O7–H7 ··· O3                        | 0.82              | 1.88         | 2.688(4)                       | 168.1                 |
| O5–H5A ··· O7 <sup>#1</sup>         | 0.82              | 1.81         | 2.623(4)                       | 173.5                 |
| $O8-H8 \cdots O2^{\#2}$             | 0.82              | 2.19         | 2.998(9)                       | 168.2                 |
| C17–H17A $\cdots$ O8 <sup>#3</sup>  | 0.96              | 2.54         | 3.248(10)                      | 131.1                 |
| Complex 2                           |                   |              |                                |                       |
| $O5-H5 \cdots O7^{\#1}$             | 0.82              | 1.87         | 2.637(12)                      | 154.5                 |
| $C7-H7 \cdots O2^{\#2}$             | 0.93              | 2.52         | 3.393(12)                      | 157.2                 |
| Complex 4                           |                   |              |                                |                       |
| O1W–H1WA ···O3                      | 0.85              | 1.83         | 2.630(3)                       | 155.1                 |
| O3W–H3WA ···O1W                     | 0.85              | 2.14         | 2.980(4)                       | 170.7                 |
| O4W–H4WB ··· O8                     | 0.85              | 2.01         | 2.701(3)                       | 138.2                 |
| O3W-H3WB ··· O5                     | 0.85              | 1.94         | 2.640(3)                       | 138.9                 |
| O6W–H6WB ··· O4                     | 0.85              | 2.07         | 2.897(4)                       | 164.2                 |
| $N6-H6 \cdots O6^{\#1}$             | 0.86              | 1.99         | 2.841(3)                       | 172.2                 |
| $N8H8\cdots O5W^{\#2}$              | 0.86              | 1.98         | 2.822(4)                       | 165.4                 |
| O1W–H1WB $\cdots$ O6W <sup>#3</sup> | 0.85              | 1.79         | 2.628(4)                       | 170.9                 |
| O2W–H2WA ··· O6 <sup>#4</sup>       | 0.85              | 2.34         | 2.936(4)                       | 127.3                 |
| O2W–H2WA $\cdots$ N9 <sup>#4</sup>  | 0.85              | 2.27         | 3.112(3)                       | 172.2                 |
| O2W–H2WB $\cdots$ O4 <sup>#5</sup>  | 0.85              | 1.96         | 2.805(3)                       | 178.0                 |
| O5W–H5WA $\cdots$ O5 <sup>#5</sup>  | 0.85              | 2.07         | 2.887(4)                       | 160.0                 |
| O5W-H5WB ··· O3 <sup>#5</sup>       | 0.85              | 2.05         | 2.815(3)                       | 150.2                 |

Table S3. Hydrogen bonds (Å) and angles ( ) of the complexes  $1,\,2$  and  $4^*$ 

\*Symmetry transformation used to generate equivalent atoms: complex **1**: #1: -1-x, -1/2+y, -3/2-z; #2: -x, -1-y, -1-z; #3: x, -1/2-y, -1/2+z; complex **2**: #1: 1+x, y, z; #2: 3/2-x, -1/2+y, 3/2-z; complex **4**: #1: 2-x, -y, 1-z; #2: 1+x, -1+y, z; #3: 1+x, y, z; #4: -1+x, 1+y, z; #5: 1-x, 1-y, 1-z.



Fig. S1. IR absorption spectrum of complex  ${\bf 1}$ 



Fig. S2. IR absorption spectrum of complex 2



Fig. S3. IR absorption spectrum of complex 3



Fig. S4. IR absorption spectrum of complex 4



Fig. S5. UV-vis absorption spectrum of complex 1



Fig. S6. UV-vis absorption spectrum of complex 2



Fig. S7. UV-vis absorption spectrum of complex 3



Fig. S8. UV-vis absorption spectrum of complex 4



Fig. S9. TG curve of the complex  ${\bf 1}$ 



Fig. S10. TG curve of the complex  ${\bf 2}$ 



Fig. S11. TG curve of the complex 3



Fig. S12. TG curve of the complex 4



Fig. S13. The view of 1D chain of complex 1 (All H atoms are omitted for clarity)



Fig. S14. The view of 1D chain in complex 2 (All H atoms are omitted for clarity)



**Fig. S15.** The view of 1D chain via hydrogen bonds in complex **4** (All H atoms expert for the hydrogen bonds are omitted for clarity; Symmetry codes: #4: -1+x, 1+y, z)



**Fig. S16.** The view of 3D network structure via hydrogen bonds in complex **4** (All H atoms expert for the hydrogen bonds are omitted for clarity; Symmetry codes: #1: 2-x, -y, 1-z; #2: 1+x, -1+y, z; #3: 1+x, y, z; #4: -1+x, 1+y, z; #5: 1-x, 1-y, 1-z.)