Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary data

Synergetic degradation of rhodamine B on BiOCl_xBr_{1-x} sheets by combined photosensitization and photocatalysis under visible light irradiation

Dandan Du, Wenjuan Li*, Shasha Chen, Tingjiang Yan, Jinmao You, Desheng Kong*

Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, P. R. China

Corresponding author Tel & Fax: (+86)537-4458301, E-mail: liwenjuan2801@163.com

Summary: This file contains 9 pages, 2 tables, 7 figures.

Samples with different Cl/Br ratios	Eg (eV)
0:1	2.75 (E _{CB} =0.30, E _{VB} =3.05)
1:1	$2.93 (E_{CB}=0.27, E_{VB}=3.20)$
2:1	3.03
5:1	3.24
1:0	3.26 (E _{CB} =0.13, E _{VB} =3.39)
1:2	2.83
1:5	2.79

Table S1 The Eg of samples with different Cl/Br ratios

Table S2 BET surface areas of $\mathrm{BiOCl}_x\mathrm{Br}_{1\text{-}x}$ samples

Samples with different Cl/Br ratios	$A_{\rm BET}({ m m}^2{ m g}^{-1})$
0:1	13.02
1:1	19.00
2:1	10.94
5:1	10.31
1:0	5.70
1:2	9.18
1:5	6.51

Figure S1 A schematic diagram for the synthesis routes of $\operatorname{BiOCl}_x\operatorname{Br}_{1-x}$ samples

Figure S2 Nitrogen adsorption–desorption isotherms (a) and pore size distributions (b) of the assynthesized $BiOCl_xBr_{1-x}$ (Cl:Br=1:1) and BiOBr

Figure S3 XPS peaks for Bi4f, O1s, Cl2p and Br3d in BiOCl_xBr_{1-x} (Cl:Br=1:1) sample

Figure S4 Comparison of rate constants (fitted by pseudo-1st-order kinetic model) of $BiOCl_xBr_{1-x}$

(Cl:Br=1:1), BiOBr and BiOCl

Figure S5 The degradation rate of cycling runs for the photodegradation of RhB in the presence of $BiOCl_xBr_{1-x}$ (Cl:Br=1:1) under visible light irradiation

Figure S6 DMPO spin-trapping ESR spectra in $BiOCl_xBr_{1-x}$ (Cl:Br=1:1) aqueous dispersion for DMPO-•OH under visible light irradiation

Figure S7 •OH-trapping PL spectra of suspensions in $BiOCl_xBr_{1-x}$ (Cl:Br=1:1) / TA system under visible light irradiation