Enhancing the electronic properties and quantum efficiency of sulfonyl/phosphoryl-substituted blue iridium complexes via different ancillary ligands

Yanling Si^a, Shuai Zhang^a, Nan Qu^a, Guoyou Luan*^a and Zhijian Wu*^b

^a College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin 130118, P. R. China.

^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

item	PBE0	B3LYP	M062X	Exp. ²¹
Bond Length				
Ir-N1	2.037	2.062	2.052	2.020
Ir-C1	1.986	2.005	1.978	1.989
Ir-C2	1.992	2.008	1.984	1.998
Ir-N2	2.048	2.074	2.070	2.039
Ir-N3	2.163	2.205	2.213	2.140
Ir-O1	2.149	2.172	2.183	2.149
Bond Angle				
N1-Ir-C1	80.7	80.4	80.7	81.3
N1-Ir-C2	95.18	95.5	95.1	95.0
N1-Ir-N2	175.5	175.6	175.6	175.7
N1-Ir-O1	93.4	93.4	93.2	92.3
N1-Ir-N3	88.5	88.4	88.2	88.3
C1-Ir-C2	90.7	91.4	87.0	88.0
C1-Ir-N2	98.2	98.4	97.8	96.8
C1-Ir-O1	171.9	171.5	172.0	171.0
C1-Ir-N3	97.0	97.3	98.2	95.9
C2-Ir-N2	80.5	80.2	80.7	81.1
C2-Ir-O1	95.3	95.1	99.1	98.8
C2-Ir-N3	171.8	170.9	174.3	175.2
N2-Ir-O1	88.1	88.2	88.5	90.0
N2-Ir-N3	95.9	95.9	96.2	95.7
O1-Ir-N3	77.1	76.5	76.0	77.6
Dihedral				
Angle/deg				
C-C-S1-C	96.8	95.8	83.7	103.9
C-C-S2-C	-84.73	-86.3	-70.6	-79.2

Table S1 Main optimized geometry structural parameters of the complex **1a** in the ground at the DFT/PBE0, DFT/ B3LYP and DFT/ M062X level, respectively, together with the experimental values

	$\lambda_{\rm cal}/E({\rm eV})$	$\lambda_{\rm cal}/E({\rm eV})$	$\lambda_{\rm cal}/E({\rm eV})$	Exp. ²¹
	(B3LYP)	(M062X)	(PBE0)	
1 a	525/2.36	460/2.69	537/2.31	459
2a	525/2.36	461/2.69	537/2.31	460

Table S2 Calculated phosphorescent emission wavelength (nm)/energies (eV), of the complexes 1a and 2a in CH₂Cl₂ media with the TDDFT method at the B3LYP, M062X and PBE0 level, respectively, together with the experimental values

Table S3 Calculated wavelength (nm), oscillator strength (f) and dominant orbital excitations of the lowest singlet and triplet absorptions for **2a-2d**

	state	λ_{cal}	f	Configuration	Character	Exp. ²¹	
2a	\mathbf{S}_1	379	0.0537	HOMO->LUMO (76%),	MLCT/ILCT/LLCT	374	
				HOMO->L+1 (16%)	MLCT/ILCT/LLCT		
	S_{21}	283	0.4047	HOMO->L+6 (38%),	MLCT/ILCT		
				HOMO->L+7 (16%)	MLCT/ILCT		
	T_1	427	0.0000	H-1->L+2 (12%),	MLCT/ILCT/LLCT		
				HOMO->LUMO (32%),	MLCT/ILCT/LLCT		
				HOMO->L+1 (11%)	MLCT/ILCT/LLCT		
2b	\mathbf{S}_1	365	0.0407	HOMO->LUMO (84%)	MLCT/ILCT/LLCT		
	S_{37}	257	0.2810	H-4->L+4 (14%),	ILCT		
				H-3->L+4 (14%),	MLCT/ILCT		
				H-2->L+4 (24%)	ILCT/LLCT		
	T_1	420	0.0000	HOMO->LUMO (25%),	MLCT/ILCT/LLCT		
				HOMO->L+2 (20%)	MLCT/ILCT		
2c	\mathbf{S}_1	365	0.0392	HOMO->LUMO (93%)	MLCT/ILCT		
	S ₂₉	258	0.2976	H-4->L+4 (13%),	ILCT		
				H-3->L+4 (17%),	MLCT/ILCT		
				H-2->L+4 (31%)	ILCT/LLCT		
	T_1	420	0.0000	H-2->L+1 (17%),	ILCT/LLCT		
				HOMO->LUMO (28%),	MLCT/ILCT		
				HOMO->L+1 (16%)	MLCT/ILCT		
2d	\mathbf{S}_1	364	0.0446	HOMO->LUMO (72%),	MLCT/ILCT/LLCT		
				HOMO->L+1 (21%)	MLCT/ILCT/LLCT		
	S_{21}	276	0.2948	HOMO->L+7 (55%)	MLCT/ILCT		
	T_1	419	0.0000	H-1->L+2 (19%),	MLCT/ILCT/LLCT		
				HOMO->LUMO (22%),	MLCT/ILCT/LLCT		
				HOMO->L+2 (15%)	MLCT/ILCT		

MO	Energy(ev	Cor	npositio	n (100%	Assign	
)	Ir	SOF1	SOF2	pic	
L+5	-1.13	1	71	11	17	$\pi^*(SOF+pic)$
L+4	-1.18	2	61	28	9	$\pi^*(SOF)$
L+3	-1.43	1	33	17	49	$\pi^*(SOF+pic)$
L+2	-1.79	4	1	73	22	$\pi^*(SOF+pic)$
L+1	-1.83	3	16	15	66	$\pi^*(\text{SOF+pic})$
LUMO	-1.93	3	78	7	11	$\pi^*(SOF+pic)$
HOMO	-6.2	39	24	30	7	$d(Ir)+\pi(SOF)$
H-1	-6.58	47	5	18	29	$d(Ir)+\pi(SOF+pic)$
H-2	-6.85	3	14	62	21	$\pi(\text{SOF+pic})$
H-3	-6.95	23	50	21	7	$d(Ir)+\pi(SOF)$
H-4	-6.97	10	10	19	61	$d(Ir)+\pi(SOF+pic)$
H-5	-7.1	27	32	25	16	$d(Ir)+\pi(SOF+pic)$

Table S4 Molecular orbital composition (%) of **1a** in the ground state

Table S5 Molecular orbital composition (%) of 1b in the ground state

MO	Energy(ev	Cor	npositio	n (100%	Assign	
)	Ir	SOF1	SOF2	taz	
L+5	-1.2	1	39	28	31	$\pi^*(SOF+taz)$
L+4	-1.27	2	51	26	21	$\pi^*(SOF+taz)$
L+3	-1.47	1	47	16	35	$\pi^*(SOF+taz)$
L+2	-1.85	4	1	85	10	$\pi^*(SOF+taz)$
L+1	-1.91	3	7	9	81	$\pi^*(SOF+taz)$
LUMO	-2.04	3	87	2	7	$\pi^*(SOF)$
HOMO	-6.41	35	20	41	4	$d(Ir)+\pi(SOF)$
H-1	-6.62	28	5	8	59	$d(Ir)+\pi(SOF+taz)$
H-2	-6.9	4	11	76	9	$\pi(SOF)$
H-3	-7.04	11	59	27	2	$d(Ir)+\pi(SOF)$
H-4	-7.15	29	33	23	15	$d(Ir)+\pi(SOF+taz)$
H-5	-7.28	21	25	27	28	$d(Ir)+\pi(SOF+taz)$

MO	Energy(ev	Cor	npositio	n (100%	Assign	
)	Ir	SOF1	SOF2	bptz	
L+5	-1.17	1	89	3	7	$\pi^*(SOF)$
L+4	-1.21	2	45	42	12	$\pi^*(SOF+bptz)$
L+3	-1.4	1	54	18	26	$\pi^*(SOF+bptz)$
L+2	-1.71	3	1	4	92	$\pi^*(bptz)$
L+1	-1.81	3	3	90	4	$\pi^*(SOF)$
LUMO	-1.98	4	92	2	3	$\pi^*(SOF)$
HOMO	-6.34	36	20	40	4	$d(Ir)+\pi(SOF)$
H-1	-6.53	27	5	8	61	$d(Ir)+\pi(SOF+bptz)$
H-2	-6.84	5	11	75	9	π (SOF+bptz)
H-3	-6.98	16	56	25	3	$d(Ir)+\pi(SOF)$
H-4	-7.08	30	29	22	19	$d(Ir)+\pi(SOF+bptz)$
H-5	-7.22	24	17	27	32	$d(Ir)+\pi(SOF+bptz)$

Table S6 Molecular orbital composition (%) of 1c in the ground state

Table S7 Molecular orbital composition (%) of 1d in the ground state

MO	Energy(ev	Cor	npositio	n (100%	Assign	
)	Ir	SOF1	SOF2	N4	
L+5	-1.23	1	76	12	11	$\pi^*(SOF+N4)$
L+4	-1.28	2	56	17	26	$\pi^*(SOF+N4)$
L+3	-1.48	1	43	16	40	$\pi^*(SOF+N4)$
L+2	-1.87	4	1	88	7	$\pi^*(SOF)$
L+1	-1.93	3	7	6	84	$\pi^*(SOF+N4)$
LUMO	-2.05	3	86	3	8	$\pi^*(SOF)$
НОМО	-6.4	34	21	40	5	$d(Ir)+\pi(SOF)$
H-1	-6.8	32	7	35	26	$d(Ir)+\pi(SOF+N4)$
H-2	-6.95	11	12	51	26	$d(Ir)+\pi(SOF+N4)$
Н-3	-7.05	9	59	26	5	$\pi(SOF)$
H-4	-7.16	27	29	22	22	$d(Ir)+\pi(SOF+N4)$
H-5	-7.27	14	18	31	37	$d(Ir)+\pi(SOF+N4)$

MO	Energy(ev	Cor	npositio	n (100%	Assign	
)	Ir	POF1	POF2	pic	
L+5	-0.93	2	61	7	30	$\pi^*(POF+pic)$
L+4	-0.97	1	20	72	6	$\pi^*(POF)$
L+3	-1.26	1	17	19	63	$\pi^*(POF+pic)$
L+2	-1.61	4	13	77	6	$\pi^*(POF)$
L+1	-1.64	5	67	5	22	$\pi^*(POF+pic)$
LUMO	-1.72	2	14	13	71	$\pi^{*}(POF+pic)$
HOMO	-5.95	39	25	30	6	$d(Ir)+\pi(POF)$
H-1	-6.38	45	6	24	25	$d(Ir)+\pi(POF+pic)$
H-2	-6.62	8	14	64	14	$\pi(\text{POF+pic})$
H-3	-6.69	21	62	13	3	$d(Ir)+\pi(POF)$
H-4	-6.8	8	9	22	62	$\pi(\text{POF+pic})$
H-5	-6.9	13	14	69	4	$d(Ir)+\pi(POF)$

Table S8 Molecular orbital composition (%) of **2a** in the ground state

Table S9 Molecular orbital composition (%) of **2b** in the ground state

MO	Energy(ev	Cor	npositio	n (100%)	Assign	
)	Ir	POF1	POF2	taz	
L+5	-1.07	1	9	44	46	$\pi^*(POF+taz)$
L+4	-1.11	2	60	33	5	$\pi^*(POF)$
L+3	-1.32	1	30	21	48	$\pi^*(POF+taz)$
L+2	-1.71	4	1	88	7	$\pi^*(POF)$
L+1	-1.78	4	29	4	63	$\pi^*(POF+taz)$
LUMO	-1.85	2	65	4	28	$\pi^*(POF+taz)$
HOMO	-6.2	35	22	40	3	$d(Ir)+\pi(POF)$
H-1	-6.5	31	6	11	52	$d(Ir)+\pi(POF+taz)$
H-2	-6.7	4	10	73	13	$\pi(\text{POF+taz})$
H-3	-6.84	12	68	18	1	$d(Ir)+\pi(POF)$
H-4	-6.9	2	2	96	0	$\pi(\text{POF})$
H-5	-7	24	34	31	11	$d(Ir)+\pi(POF+taz)$

MO	Energy(eV	C	Composit	tion (100	Assign	
)	Ir	POF1	POF2	pbtz	
L+5	-1	1	10	30	59	$\pi^*(POF+bptz)$
L+4	-1.06	2	51	44	3	$\pi^*(POF)$
L+3	-1.25	1	37	24	37	$\pi^*(POF+bptz)$
L+2	-1.6	4	1	7	88	$\pi^*(bptz)$
L+1	-1.67	3	5	85	7	$\pi^*(POF)$
LUMO	-1.79	4	89	3	4	$\pi^*(POF)$
HOMO	-6.15	36	21	40	3	$d(Ir)+\pi(POF)$
H-1	-6.42	30	5	9	56	$d(Ir)+\pi(POF+bptz)$
H-2	-6.65	4	10	75	11	π (POF+bptz)
H-3	-6.79	16	64	18	2	$d(Ir)+\pi(POF)$
H-4	-6.87	2	3	94	1	$\pi(\text{POF})$
H-5	-6.94	27	29	29	15	$d(Ir)+\pi(POF+bptz)$

Table S10 Molecular orbital composition (%) of 2c in the ground state

Table S11 Molecular orbital composition (%) of 2d in the ground state

MO	Energy(eV	C	ompositi	on (100	Assign	
)	Ir	POF1	POF2	N4	
L+5	-1.09	1	4	59	36	$\pi^*(\text{POF+N4})$
L+4	-1.12	2	68	20	10	$\pi^{*}(POF+N4)$
L+3	-1.34	1	28	19	52	$\pi^*(\text{POF+N4})$
L+2	-1.72	4	2	90	5	$\pi^*(POF)$
L+1	-1.8	4	31	2	63	$\pi^{*}(POF+N4)$
LUMO	-1.86	2	63	4	31	$\pi^*(POF+N4)$
HOMO	-6.2	35	21	39	5	$d(Ir)+\pi(POF)$
H-1	-6.63	25	9	51	14	$d(Ir)+\pi(POF+N4)$
H-2	-6.79	22	11	34	32	$d(Ir)+\pi(POF+N4)$
H-3	-6.85	11	65	20	4	$d(Ir)+\pi(POF)$
H-4	-6.9	1	2	97	0	$\pi(\text{POF})$
H-5	-7.01	24	32	28	16	$d(Ir)+\pi(POF+N4)$

Table S12 Optimized S_0 structure for the complex 1a

	-		· ·				
Ir	2.12858400	-0.70346200	0.11878700	C	2.92958100	0.71896500	4.08470200
0	3.38976300	-2.26381900	0.88861200	Н	3.39556400	0.30842400	4.97365000
Ν	1.83519500	-1.85673900	-1.54816100	C	1.12362500	1.97229600	0.47677200
Ν	4.11216700	-0.02913000	-0.42072500	C	0.54105200	1.13855200	-1.71909900
C	0.41519000	-1.58409300	0.62408100	Н	0.50872400	0.36482500	-2.48000500
0	5.53263500	-2.94087500	1.00304300	C	-0.05689300	3.42518100	-1.11049800
C	1.14904200	0.91655800	-0.48152100	C	0.52676400	3.18360700	0.13489800
C	0.76218400	-2.69742500	-1.51232900	C	-0.04998900	2.35548800	-2.01816700
C	-0.04800200	-2.55039000	-0.30884600	S	-0.72581600	5.04626400	-1.48456000
C	4.43825100	1.11400700	-1.04030800	F	0.48966800	4.17359400	1.03630300
Η	3.61159100	1.76534900	-1.30698900	F	-0.61987200	2.48469600	-3.20996600
C	2.47390100	-2.70378300	-3.69138000	0	-3.12308800	-5.42797500	1.01985900
Η	3.16840400	-2.67068800	-4.52351400	0	-3.88065600	-3.78159800	2.79580800
C	4.65805100	-2.15558600	0.67110700	C	-4.82118400	-3.99163500	-0.92472200
C	-0.33897300	-1.36310500	1.77573200	Н	-4.24689200	-4.87290800	-1.19065400
Η	-0.04839400	-0.62567100	2.51643500	C	-4.62125100	-3.38769300	0.31229600
C	0.53544800	-3.57411800	-2.58012800	C	-5.35984400	-2.27066900	0.69776100
Η	-0.30852800	-4.24695400	-2.54364000	Н	-5.20161800	-1.83134100	1.67820900
C	-1.96167200	-3.06870100	1.13672000	C	-6.30182800	-1.75089300	-0.17984900
C	2.83954200	-0.05129400	2.93756000	Н	-6.88334000	-0.88008400	0.11415200
Η	3.21323600	-1.06848000	2.87423500	0	0.22878700	6.03369000	-0.99015700
C	1.81136100	2.48544500	2.89823700	0	-1.14562300	5.04497400	-2.88045100
Η	1.39541400	3.48201500	2.86440600	C	-2.19001400	5.13747200	-0.47721400
C	2.65741200	-1.86456900	-2.60732900	C	-2.14045400	5.77588700	0.75817100
Η	3.48439400	-1.16619100	-2.56415600	Н	-1.20910800	6.21683300	1.09733200
C	5.08096600	-0.88588600	-0.05506100	C	-4.51967900	4.66172700	-0.17354900
C	2.40866000	2.00957800	4.05648800	Η	-5.44881700	4.23164500	-0.53995400
Η	2.46092500	2.64510100	4.93578400	C	-3.37531400	4.58369700	-0.95647600
C	6.42134000	-0.62362900	-0.31295200	Η	-3.39538700	4.11276500	-1.93474000
Η	7.14694900	-1.36271200	0.00945900	C	-3.29734400	5.84670700	1.52588200
C	-1.21537400	-3.25859400	-0.02763100	Н	-3.26821200	6.34603900	2.49149900
C	5.75575000	1.44211900	-1.32788100	C	-4.49960000	5.29202400	1.07615800
Η	5.97756400	2.37759600	-1.83100100	C	-5.75132500	5.39895800	1.90046100
C	1.73929100	1.66599800	1.76644800	H	-5.52369400	5.46701700	2.96872800
C	-1.49625400	-2.08339300	2.01909400	Н	-6.40823200	4.53727500	1.74522400
S	-3.42185000	-4.06382400	1.44147200	H	-6.32107000	6.29690200	1.62898300
F	-1.67441600	-4.14905400	-0.91652200	C	-5.77132700	-3.45817700	-1.78894300
F	-2.17276000	-1.80163800	3.12639500	H	-5.93665800	-3.92671900	-2.75628900
C	1.39169100	-3.57866800	-3.66882700	C	-6.52299400	-2.33457600	-1.43321900
H	1.21428500	-4.26199200	-4.49408100	C	-7.56975800	-1.78216300	-2.35908100
C	6.76644000	0.55608200	-0.95941800	H	-7.60203000	-0.68831600	-2.32034000
Η	7.80630200	0.78683100	-1.17321700	Н	-8.56710600	-2.14671200	-2.08190900
N	2.26946900	0.41267000	1.81636600	H	-7.38731900	-2.08140500	-3.39562000

Table S13 Optimized S_{0} structure for the complex $\boldsymbol{2a}$

	1	0	1				
Ir	-0.01647600	-2.16005600	0.01228800	F	-3.77364400	0.25718800	-2.68860400
0	1.33942600	-3.83214300	-0.03445000	F	-3.25738200	1.77633400	1.71836000
Ν	0.59808900	-1.80799900	1.93369700	0	4.59903500	3.27825700	-1.90462700
Ν	-1.29814500	-3.83900000	0.48947900	C	5.90097200	3.15472600	1.78340700
C	1.38459700	-0.78768600	-0.33531200	Н	6.67626600	2.40491900	1.65321200
0	1.46625300	-6.04526700	0.35369100	C	4.90303000	3.30560700	0.81834500
C	-1.43803700	-0.77611800	-0.08098700	C	3.92726700	4.29458000	0.98422100
C	1.65666300	-0.95950900	2.07631900	Н	3.17742500	4.44066100	0.21114000
C	2.10860900	-0.38162900	0.81799700	C	3.93475200	5.10268000	2.11632000
C	-2.62247800	-3.81325900	0.69454000	Н	3.17319800	5.86808500	2.23970900
Η	-3.09798800	-2.83999600	0.61988600	0	-6.01848900	1.55649500	-1.82437700
C	0.51971700	-2.17207500	4.29623200	C	-4.47887600	3.73968800	-1.10308100
Η	0.04350700	-2.66746000	5.13514400	C	-5.13481100	4.44760300	-2.11430000
C	0.85877500	-4.98723600	0.28027100	Н	-5.96397700	3.97359600	-2.63253900
C	1.75083000	-0.24410500	-1.56617800	C	-2.96841300	5.59875700	-0.78891400
Η	1.24715100	-0.51906700	-2.48678700	Н	-2.11838100	6.04398100	-0.27908500
C	2.16941100	-0.70719800	3.35576100	C	-3.38723600	4.31702100	-0.44521700
Н	3.00555700	-0.03266700	3.46707000	Н	-2.86072100	3.76902200	0.33123700
C	3.52950400	1.10241100	-0.54151800	C	-4.70987600	5.72834900	-2.45605500
C	0.05649600	-3.22660400	-2.76926900	Н	-5.21876200	6.27433900	-3.24580300
Η	0.87134800	-3.79013500	-2.32573700	C	-3.62963800	6.30458000	-1.79268600
C	-2.01364000	-1.69837600	-3.70258900	C	5.91027700	3.96982800	2.91193300
Η	-2.82971100	-1.08310400	-4.05239400	Н	6.69260100	3.85069100	3.65693100
C	0.05403000	-2.38962700	3.01233400	C	4.92543900	4.93963200	3.08246100
Η	-0.78458700	-3.04720600	2.81747300	Н	-3.29540500	7.30282200	-2.06263700
C	-0.63892400	-5.00830900	0.55622600	Н	4.93579800	5.57574700	3.96375700
C	-1.37925000	-2.58434700	-4.56038300	Р	-5.11904500	2.07736700	-0.74818100
Η	-1.70732900	-2.66132100	-5.59301400	Р	4.84026300	2.36830600	-0.74293300
C	-1.29422100	-6.19891100	0.84846400	C	-6.00625300	2.15380800	0.84169900
Η	-0.69569600	-7.10272600	0.88807600	C	-6.96695400	1.15779400	1.04709300
C	3.16191800	0.52260500	0.66902600	C	-5.85047400	3.16678800	1.79055300
C	-3.34194500	-4.96344000	0.98739800	C	-7.74041200	1.15887800	2.20365400
Η	-4.41357800	-4.89994100	1.14584100	H	-7.12033900	0.40324200	0.28033400
C	-1.58873800	-1.59210600	-2.37292400	C	-6.63077000	3.16974000	2.94256400
C	2.79117300	0.66549400	-1.65236800	Н	-5.12654000	3.95993900	1.62806000
F	3.89851800	0.84349900	1.75315300	C	-7.57106700	2.16358800	3.15337200
F	3.10883300	1.12547400	-2.85899500	H	-8.48539100	0.38266400	2.35724600
C	1.60248800	-1.31326300	4.46426100	H	-6.50828600	3.96321400	3.67492600
H	2.00331600	-1.11427800	5.45394700	H	-8.18037600	2.16993200	4.05342600
C	-2.66521500	-6.17898300	1.06872100	C	6.39310900	1.43622800	-0.88349900
Η	-3.20293200	-7.09492400	1.29737300	C	7.29321600	1.87403300	-1.85863800
N	-0.56078200	-2.37374200	-1.93882400	C	6.70781000	0.32450100	-0.09432300
C	-0.32311800	-3.36242900	-4.09353800	C	8.50480700	1.21131300	-2.03521500

Η	0.20245000	-4.06035000	-4.73594400	Н	7.02057800	2.72384200	-2.47862100
C	-2.10700400	-0.70251300	-1.33619600	C	7.92128200	-0.33260700	-0.27241300
C	-1.86404800	0.08268000	0.93627600	Н	6.00705200	-0.03142000	0.65636000
Η	-1.37572700	0.10352400	1.90532000	C	8.81978000	0.11129600	-1.24160800
C	-3.64082700	1.02376800	-0.48007200	Н	9.20106600	1.55083100	-2.79730400
C	-3.17228200	0.18843400	-1.49774500	Н	8.16230400	-1.19772900	0.33936800
C	-2.92122300	0.94596700	0.71708500	H	9.76428200	-0.40777800	-1.38205600