# Electronic Supplementary Information 

New Journal of Chemistry

## Alginic acid aerogel: a heterogeneous Brønsted acid promoter for the direct Mannich reaction

Asja Pettignano, ${ }^{a, b}$ Luca Bernardi, ${ }^{b}$ Mariafrancesca Fochi, ${ }^{b}$ Lorenzo Geraci, ${ }^{b}$ Mike Robitzer, ${ }^{a}$ Nathalie Tanchoux ${ }^{a}$ and Françoise Quignard ${ }^{a}$

${ }^{a}$ Institut Charles Gerhardt<br>Matériaux Avancés pour la Catalyse et la Santé<br>UMR 5253, CNRS-UM2-ENSCM-UM1,<br>8 Rue de l'Ecole Normale, 34296, Montpellier, Cedex 5 (France)<br>${ }^{\text {b }}$ Department of Industrial Chemistry "Toso Montanari"<br>School of Science<br>University of Bologna<br>V. Risorgimento, 4 I-40136 Bologna (Italy)

## Table of Contents

$\qquad$
General methods and materialsS1
Preparation of the gel materials ..... S2
Optimization of reaction parameters: selected results ..... S4
Kinetic study on the 2C Mannich reaction. ..... S7
Optimised procedure and products characterisation ..... S9
Copies of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of products 4 . ..... S15

## General methods and materials

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian AS 400 or 600 spectrometer. Chemical shifts ( $\delta$ ) are reported in ppm relative to residual solvent signals for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$, ${ }^{1}$ and using $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ as external reference ( -63.7 ppm ) for ${ }^{19} \mathrm{~F}$ NMR. ${ }^{13} \mathrm{C}$ NMR spectra were acquired with ${ }^{1} \mathrm{H}$ broad band decoupled mode. Chromatographic purifications were performed using 70-230 mesh silica. Mass spectra were recorded on using electronic impact (EI) ionisation techniques. The relative configuration of the major diastereoisomer in compounds $\mathbf{4 a - c}$ and $\mathbf{4 e}$ was determined as anti by comparing their NMR spectra with the reported ones, as outlined below. We assume a similar reaction pathway for the remaining compounds 4 , leading to the same anti relative configuration for the major diastereoisomer. This assignment is further substantiated by observing the signals related to the $\alpha-\mathrm{N}$ protons, which follow a similar pattern in all compounds 4: in particular, in the minor diatereoisomers of all compounds 4 this proton resonates at higher ppm and features a smaller J coupling constant with the $\alpha-\mathrm{CH}$, compared to the major diastereomers.

Analytical grade solvents and commercially available reagents were used as received, unless otherwise stated. To avoid reactivity due to the presence of residual acid, the purity of aldehydes 1 was checked by ${ }^{1} \mathrm{H}$ NMR before use. Benzaldehyde 1a was purified by distillation, 4chlorobenzaldehyde $\mathbf{1 b}$ and 4-fluorobenzaldehyde $\mathbf{1 e}$ by washing a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with sat. $\mathrm{NaHCO}_{3}$, drying with $\mathrm{MgSO}_{4}$, filtration and evaporation. Sodium alginates Protanal 200S and Protanal 240D, provided by FMC Biopolymer, and commercially available Laminaria Digitata for food uses, purchased from Celnat, were suitably treated to obtain the catalytic materials. Alginic acid powder Satialgine ${ }^{\circledR}$ H8 has been supplied by JRS Pharma and used as obtained.

[^0]
## Preparation of the gel materials

Alginic acid alcogel. The catalyst beads were obtained using a procedure previously reported in the literature. ${ }^{2}$ A $2 \% \mathrm{w} / \mathrm{V}$ solution of sodium alginate was obtained, adding 2 g of the desired type of alginate (Protanal 200S, Protanal 240D) to 100 mL of distilled water and stirring it until a clear and viscous solution was obtained. The prepared solution was added dropwise into 400 mL of 1 $\mathrm{mol} / \mathrm{L} \mathrm{HCl}$ at room temperature and the resulting solution system was stirred slowly overnight to allow the maturation of the beads, whose formation is immediately evident. After filtration, the beads were carefully rinsed with distilled water and dehydrated by immersion in a series of ethanol/water baths, with increasing alcohol content (10, 30, 50, 70, $90 \%$ and absolute ethanol), for 15 min each.

Alginic acid aerogel beads. After solvent replacement, the gel was filtered and loaded into a stirred flask containing absolute ethanol and molecular sieves for 24 h , to guarantee the total dehydration of the beads. The wet gel was converted to an aerogel (denoted as AG-1 or AG-2, depending on the composition) by low temperature drying under supercritical $\mathrm{CO}_{2}$ conditions ( 74 bar, $31.5^{\circ} \mathrm{C}$ ) in a Polaron 3100 apparatus.

Alginic acid xerogel beads. After solvent replacement, the gel was filtered and dried by evaporative drying using a rotary evaporator, at $60^{\circ} \mathrm{C}$ for almost 1 h , to obtain the final material (denoted as XG).

Alginic acid solvogel. The alginic acid beads, after maturation in the acidic solution, were filtered, rinsed with distilled water and dehydrated using a series of solvent/water baths (es. acetonitrile/water instead of ethanol/water ones), with increasing acetonitrile content to obtain the desired solvent mixture (80:20 acetonitrile/water, denoted as SG).

Laminaria digitata aerogel. The desired amount of Laminaria Digitata was washed using distilled water at $60^{\circ} \mathrm{C}$, to remove salts present on the surface, and immersed in a 1 M solution of HCl , stirring it slowly overnight. The amount of HCl necessary to guarantee a perfect acidification was calculated considering the presence of $45 \%$ alginic acid groups in the seaweed. ${ }^{3}$ After filtration, the seaweed was carefully rinsed with distilled water and dehydrated by immersion in a series of

[^1]ethanol/water baths, with increasing alcohol content ( $10,30,50,70,90 \%$ and absolute ethanol), for 15 min each. The seaweed was then, dried following the procedure described for the alginic acid aerogel obtaining the final material (denoted as $S$ ).

## Surface area of the catalytic materials

Surface areas were measured by the BET method by nitrogen gas adsorption/desorption at $77{ }^{\circ} \mathrm{K}$, using a Micrometrics Tristar apparatus on samples outgassed at $50^{\circ} \mathrm{C}$ for 6 hours.

| Polysaccharide gel | Surface area $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$ |
| :---: | :---: |
| AG-1 | 250 |
| AG-2 | 280 |
| XG | $<2$ |
| S | 122 |

## Optimisation of reaction parameters: selected results

## Stoichiometric ratio



| Entry | 3a:5 | $\mathbf{Y}^{\mathbf{1}} \mathbf{4 a} \mathbf{( \% )}$ | $\mathbf{Y}^{\mathbf{1} 6} \mathbf{( \% )}$ |
| :--- | :--- | :--- | :--- |
| 1 | $1: 2$ | 27 | 7 |
| 2 | $1: 1$ | 56 | 16 |
| 3 | $2: 1$ | 54 | 11 |
| 4 | $5: 1$ | 58 | 21 |

${ }^{1}$ The yield was calculated by ${ }^{1} \mathrm{H}$-NMR and refers to the product:imine ratio, without use of an internal standard.

## A 2:1 ketone/imine ratio was selected because it allowed obtaining the best product/byproduct ratio.

## Reactions in pure water



| Entry | AG-1 | additive | $\mathbf{Y}^{\mathbf{1}} \mathbf{4 a}$ (\%) |
| :--- | :--- | :--- | :--- |
| 1 | yes | - | $<10$ |
| 2 | yes | Aliquat-336 | 17 |
| 3 | no | Aliquat-336 | $<10$ |
| 4 | yes | SDS | 54 |
| 5 | no | SDS | 91 |

${ }^{1}$ Yield calculated by ${ }^{1} \mathrm{H}$ NMR using bibenzyl as internal standard.
The reaction without phase-transfer catalyst or with aliquat-336 did not proceed, presumably for the poor solubility of the reactants. In the reactions in the presence of SDS, alginic acid did not show catalytic activity. We attribute the lower yields obtained in the reactions with SDS and AG-1, compared to the reactions in the absence of AG-1, to the capability of alginic acid in sequestering
the surfactant from the reaction mixture, and thus preventing the reaction from occurring. Reactions in pure water are thus not useful for our purposes.

## Concentration



| Entry | Conc (M) | $\mathbf{Y}^{\mathbf{1}}$ Catalysed (\%) | $\mathbf{Y}^{\mathbf{1}}$ Blank reaction (\%) |
| :--- | :--- | :--- | :--- |
| 1 | 0.1 | 43 | 21 |
| 2 | 0.2 | 78 | 34 |
| 3 | 0.35 | 91 | 22 |
| 4 | 0.5 | 95 | 61 |

${ }^{1}$ The yield was calculated by ${ }^{1} \mathrm{H}$-NMR and refers to the product:imine ratio, without use of an internal standard.

A 0.35 M concentration was selected for the following tests considering the higher yields and the presence of a limited background reaction in absence of the catalyst.

## Amount of catalyst



| Entry | $\mathbf{t}(\mathbf{h})$ | $\mathbf{Y}^{\mathbf{1}} \mathbf{1 0} \mathbf{~ m o l \%}$ AG-1 (\%) | $\mathbf{Y}^{\mathbf{1}} \mathbf{2 0} \mathbf{~ m o l \%}$ AG-1 (\%) |
| :--- | :--- | :--- | :--- |
| 1 | 5 | 26 | 53 |
| 2 | 16 | 70 | 82 |
| 3 | 24 | 75 | 91 |

${ }^{1}$ The yield was calculated by ${ }^{1} \mathrm{H}$-NMR and refers to the product:imine ratio, without use of an internal standard

A higher amount of catalyst led to a slightly higher yield. Considering its cheapness, a $20 \mathrm{~mol} \%$ catalyst loading was used throughout.

## Reaction temperature



| Entry | $\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{Y}^{\mathbf{1}} \mathbf{C a t ~ ( \% )}$ | $\mathbf{Y}^{\mathbf{1}}$ Blank (\%) |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 36 | 14 |
| 2 | 50 | 68 | 61 |
| 3 | RT | 91 | 24 |

${ }^{1}$ Yield calculated by ${ }^{1} \mathrm{H}$ NMR using bibenzyl as internal standard.

Room temperature appears as the most suitable temperature to perform this AG-1 catalysed transformation, as neither lower nor higher temperatures are advantageous.

## Kinetic study on the 2C Mannich reaction

In order to ascertain the optimal reaction time for the alginic acid aerogel AG-1 catalysed Mannich reaction (i.e. reaching a satisfactory yield while keeping at acceptable levels the difference with the non-catalysed process), the evolution (4a yield vs time) of the 2C Mannich reaction between imine 5 and cyclohexanone $3 \mathbf{a}$ (2 equiv.), under the optimal reaction conditions $\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\right.$ 8:2 solvent mixture, $20 \mathrm{~mol} \%$ catalyst loading, 0.35 M , RT) was determined by ${ }^{1} \mathrm{H}$ NMR using bibenzyl as internal standard. Instead of sampling from a single reaction, which would modify the catalyst loading due to its heterogeneous nature, it was preferred to run a different experiment for each point of the curve corresponding to the catalysed process.

${ }^{1} \mathrm{H}$ NMR yield of 4a vs time in the AG-1 catalysed ( $20 \mathrm{~mol} \%$ ) Mannich reaction between $\mathbf{5}$ and 3a ( 2 equiv.), and comparison with the non-catalysed process. Conditions: imine 5 ( 0.15 mmol ), ketone 3a ( 0.30 mmol ), AG-1 ( $20 \mathrm{~mol} \%$ ), $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 8: 2(480 \mu \mathrm{~L})$, bibenzyl ( 0.075 mmol ).

A reaction time of ca 24 h gives a satisfactory yield in the product $\mathbf{4 a}$, with a minor non-catalysed contribution. Seen that the reaction considerably slows down after approximately 9 h , we could confirm 18-20 h as the optimal time lapse for our experiments.

Furthermore, the curve is fitting with a pseudo-first order reaction rate, as shown below:


First-order kinetics plots of AG-1 catalysed ( $20 \mathrm{~mol} \%$ ) Mannich reaction between 5 and 3a (2 equiv.). Ct: concentration at a given time, t .

## Optimised procedure and products characterisation

## General procedure for the catalytic 3C Mannich reaction:

To a 3 mL screw cap vial were sequentially added the aldehyde $\mathbf{1}(0.168 \mathrm{mmol})$, the solvent mixture $\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\right.$ 8:2, $\left.480 \mu \mathrm{~L}\right)$, the aniline $2(0.168 \mathrm{mmol})$, the ketone 3 ( 0.336 mmol , 2 equiv.), and 6 mg of aerogel beads ( 12 beads, 0.5 mg per bead, $20 \mathrm{~mol} \%$ catalyst loading considering full availability of carboxylic acid moieties). After screw-capping the vial, the mixture was gently shaken at RT for 18-20 h . The supernatant was filtered through a Pasteur pipette packed with cotton in a flask, the beads carefully washed with EtOAc or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$, the washings filtered through the same pipette and added to the same flask. The solvents were evaporated to dryness under reduced pressure, and the residue analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the diastereomeric ratio. The pure Mannich adducts 4 were obtained by purification of the crude by chromatography on silica gel. As detailed below, two purifications were usually necessary.

## 2-(Phenyl(phenylamino)methyl)cyclohexan-1-one (4a)



Following the general procedure, the title compound was obtained as a white solid in $90 \%$ yield, after one chromatographic purification ( $n$-hexane/EtOAc 8:2). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be 61:39, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.40-7.24\left(\mathrm{~m}, 4 \mathrm{H}_{\text {maj }}\right.$, $\left.4 \mathrm{H}_{\text {min }}\right)$, 7.22-7.16 (m, $\left.1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right)$, $7.10-7.00\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 6.67-6.57\left(\mathrm{~m}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 6.57-$ $6.49\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 4.80\left(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right), 4.62\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right), 4.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}_{\text {maj }}\right.$, $1 \mathrm{H}_{\text {min }}$ ), 2.83-2.69 (m, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), 2.49-2.23 (m, $\left.2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right)$, 2.11-1.52 $\left(\mathrm{m}, 6 \mathrm{H}_{\text {maj }}, 6 \mathrm{H}_{\text {min }}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ [signals of both diastereoisomers] $=212.8,211.3,147.5,147.3,141.7$, 141.6, 129.1, 129.0, 128.5, 128.4, 128.3, 127.5, 127.3, 127.2, 127.0, 117.7, 117.5, 114.1, 113.6, $58.0,57.5,57.3,56.6,42.4,41.8,31.3,28.7,28.0,27.0,24.9,23.7$. Spectral data are consistent with literature values, ${ }^{4}$ which also allowed assignment of the relative configuration of the major diastereoisomer as anti.

## 2-((4-Chlorophenyl)(phenylamino)methyl)cyclohexan-1-one (4b)



Following the general procedure, the title compound was obtained as a white solid in $78 \%$ yield, after two chromatographic purifications (one with $n$ hexane/EtOAc 8:2, one with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $63: 37$, favouring the anti-isomer. ${ }^{1} \mathrm{H}$

[^2]NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.35-7.23\left(\mathrm{~m}, 4 \mathrm{H}_{\text {maj }}, 4 \mathrm{H}_{\text {min }}\right)$, $7.11-7.04\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 6.70-6.62$ $\left(\mathrm{m}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 6.55-6.48\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 4.74\left(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right), 4.66\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right)$, $4.60\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right), 2.82-2.69\left(\mathrm{~m}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 2.46-2.38\left(\mathrm{~m}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 2.37-2.26(\mathrm{~m}$, $\left.1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 2.09-1.54\left(\mathrm{~m}, 6 \mathrm{H}_{\text {maj }}, 6 \mathrm{H}_{\text {min }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [aromatic CH signals not assigned] = 212.4 (maj), $212.1(\mathrm{~min}), 147.1(\mathrm{~min}), 147.0(\mathrm{maj}), 140.4$ (maj), $140.0(\mathrm{~min}), 132.8$ (maj), 132.7 (min), 129.1, 129.1, 129.0, 128.7, 128.6, 128.5, 117.9, 117.7, 114.0, 113.6, 57.5 (min), 57.3 (maj), 56.9 (min), 56.4 (maj), 42.4 (min), 42.0 (maj), 31.5 (maj), 28.9 (min), 27.8 (maj), 27.0 $(\mathrm{min}), 24.9(\mathrm{~min}), 24.0$ (maj). Spectral data are consistent with literature values, ${ }^{5}$ which also allowed assignment of the relative configuration of the major diastereoisomer as anti.

## 2-((4-Nitrophenyl)(phenylamino)methyl)cyclohexan-1-one (4c)



Following the general procedure, the title compound was obtained as a white solid in $76 \%$ yield after two chromatographic purifications (one with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, one with $n$-hexane/EtOAc 8:2). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be 64:36, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.17-8.12\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 7.60-7.53\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right)$, 7.11-7.05 $\left(\mathrm{m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 6.71-6.64\left(\mathrm{~m}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 6.52-6.47\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 4.86(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}$, $1 \mathrm{H}_{\min }$ ), $4.85\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}_{\mathrm{maj}}\right), 4.71\left(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{maj}}\right), 4.60\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}_{\min }\right), 2.89-2.81\left(\mathrm{~m}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\min }\right)$, 2.48-2.28 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), 2.11-1.55 (m, $6 \mathrm{H}_{\text {maj }}, 6 \mathrm{H}_{\text {min }}$ ). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [aromatic C signals not assigned] = 211.8 (maj), 210.6 (min), 149.9, 149.6, 147.1, 146.6, 129.3, 129.2, 128.6, 128.2, 123.7, 123.6, 118.4, 118.1, 114.0, 113.5, 57.8 (maj), 57.2 (min), 57.0 (maj), 56.2 (min), 42.5 (min), 42.4 (maj), 32.0 (maj), 29.0 (min), 27.8 (maj), 27.0 (min), 24.9 (min), 24.5 (maj). Spectral data are consistent with literature values, ${ }^{6}$ which also allowed assignment of the relative configuration of the major diastereoisomer as anti.

## 2-(Naphthalen-2-yl(phenylamino)methyl)cyclohexanone (4d)



Following the general procedure, the title compound was obtained as a pale yellow solid in $60 \%$ yield, after two chromatographic purifications (one with $n$ hexane/EtOAc 7:3, one with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $61: 39$, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.86-7.78\left(\mathrm{~m}, 4 \mathrm{H}_{\text {maj }}, 4 \mathrm{H}_{\text {min }}\right), 7.55-7.41\left(\mathrm{~m}, 3 \mathrm{H}_{\text {maj }}, 3 \mathrm{H}_{\text {min }}\right), 7.10-7.02$ $\left(\mathrm{m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 6.07-6.56\left(\mathrm{~m}, 3 \mathrm{H}_{\text {maj }}, 3 \mathrm{H}_{\text {min }}\right), 4.98\left(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right), 4.81(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$,

[^3]$\left.1 \mathrm{H}_{\text {maj }}\right)$, $4.74\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right)$, 2.93-2.81 (m, $\left.1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 2.50-2.41\left(\mathrm{~m}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 2.40-2.28$ $\left(\mathrm{m}, 1 \mathrm{H}_{\mathrm{maj}}, 1 \mathrm{H}_{\text {min }}\right), 2.15-1.49\left(\mathrm{~m}, 6 \mathrm{H}_{\text {maj }}, 6 \mathrm{H}_{\text {min }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [aromatic signals not assigned] $=212.8(\mathrm{~min}), 211.3(\mathrm{maj}), 147.5,147.2,139.3,139.2,133.3,133.3,132.8,132.7$, $129.0,129.0,128.4,128.1,127.9,127.9,127.6,127.6,126.4,126.3,126.1,126.0,125.7,125.6$, $125.1,117,8,117.6,114.2,113.7,58.2$ (min), 57.5 (maj), 57.4 (min), 56.7 (maj), 42.4 (min), 41.8 (maj), 31.3 (maj), 28.7 (min), 27.9 (maj), 27.0 (min), 24.9 (min), 23.7 (maj). EI-MS: m/z = 329 $\left[\mathrm{M}^{+}, 3\right], 231\left[\mathrm{M}^{+}-98,83\right], 230\left[\mathrm{M}^{+}-99,100\right]$. The relative configuration of the major diastereoisomer was tentatively assigned as anti by analogy with the remaining compounds 4 .

## 2-((4-Chlorophenyl)((4-chlorophenyl)amino)methyl)cyclohexanone (4e)



Following the general procedure, the title compound was obtained as a yellow solid in $61 \%$ yield, after chromatographic purification ( $n$-hexane/EtOAc 8:2). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be 64:36, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta=7.38-7.30\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right.$ ), 7.12-7.04 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), 7.02-6.93 (m, $2 \mathrm{H}_{\text {maj }}$, $2 \mathrm{H}_{\text {min }}$ ), 6.69-6.61 (m, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), 6.56-6.49 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), $4.75\left(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right), 4.66$ (br s, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), $4.62\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right.$ ), 2.81-2.69 (m, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), 2.45-2.37 (m, $1 \mathrm{H}_{\text {maj }}$, $1 \mathrm{H}_{\text {min }}$ ), 2.37-2.27 (m, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), 2.09-1.53 (m, $6 \mathrm{H}_{\text {maj }}, 6 \mathrm{H}_{\text {min }}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [aromatic CH signals not assigned] $=212.6(\mathrm{maj}), 211.3(\mathrm{~min}), 161.8(\mathrm{~d}, \mathrm{~J}=246 \mathrm{~Hz}), 161.7(\mathrm{~d}, \mathrm{~J}=$ 246 Hz ), $137.4(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 137.1(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}$ ), $129.1(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz})$, 129.1, 129.05, $128.8(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}), 117.8,117.7,115.4(\mathrm{~d}, \mathrm{~J}=21 \mathrm{~Hz}), 115.2(\mathrm{~d}, \mathrm{~J}=21 \mathrm{~Hz}), 114.0,113.6,57.5$ (maj), 57.4 (maj), 56.9 (min), 56.5 (min), 42.5 (min), 42.0 (maj), 31.4 (maj), 29.0 (min), 27.8 (maj), 27.0 (min), 24.9 (min), 23.9 (maj); ${ }^{19}$ F NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta=-115.7$ (m, maj), 116 (m, min). Spectral data are consistent with literature values, ${ }^{5}$ which also allowed assignment of the relative configuration of the major diastereoisomer as anti.

## 2-((4-Chlorophenyl)((4-chlorophenyl)amino)methyl)cyclohexanone (4f)



Following the general procedure but using 5 equiv. of cyclohexanone, the title compound was obtained as a pale yellow solid in $57 \%$ yield, after two chromatographic purifications (one with $n$-hexane/EtOAc 7:3, one with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be 53:47, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $[\mathrm{NH}$ signal not assigned $]=7.28-7.24\left(\mathrm{~m}, 4 \mathrm{H}_{\text {maj }}, 4 \mathrm{H}_{\text {min }}\right), 7.03-6.98\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 6.46-6.37(\mathrm{~m}$, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), $4.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67\left(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right.$ ), $4.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$,
$1 \mathrm{H}_{\text {maj }}$ ), 2.80-2.67 (m, $\left.1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 2.46-2.23\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 2.09-1.48\left(\mathrm{~m}, 6 \mathrm{H}_{\text {maj }}, 6 \mathrm{H}_{\text {min }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [signals of both diastereoisomers] $=212.3,211.1,145.7,145.6,139.9$, $139.5,132.9,132.8,129.0,128.9,128.8,128.7,128.6,128.6,122.6,122.4,115.2,114.7,57.8,57.2$, $57.1,56.2,42.4,42.2,31.7,28.7,27.8,26.9,24.8,24.1$. Spectral data are consistent with literature values, ${ }^{4}$ which also allowed assignment of the relative configuration of the major diastereoisomer as anti.

## 2-(((4-Bromophenyl)amino)(4-chlorophenyl)methyl)cyclohexanone (4g)



Following the general procedure but using 5 equiv. of cyclohexanone, the title compound was obtained as a pale yellow solid in $95 \%$ yield, after two chromatographic purifications (one with $n$-hexane $/ \mathrm{Et}_{2} \mathrm{O} 6: 4$, one with $n$ hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $50: 50 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.27-7.15(\mathrm{~m}$, $4 \mathrm{H}, 4 \mathrm{H}$ ), 7.11-7.01 (m, 2H, 2H), 6.36-6.26 (m, 2H, 2H), $4.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.61(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}), 2.37-2.17(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}), 2.14-1.42(\mathrm{~m}, 6 \mathrm{H}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [signals of both diastereoisomers] $=212.2,211.0,146.2$, 146.1, 139.8, 139.5, 131.8, 131.7, 128.9, 128.6, 128.6, 128.6, 115.6, 115.2, 109.5, 109.3, 57.6, 57.1, $56.9,56.2,42.4,42.2,31.7,28.7,27.9,26.9,24.8,24.1$. Spectral data are consistent with literature values. ${ }^{4}$

## 2-((4-Chlorophenyl)((3,4-dichlorophenyl)amino)methyl)cyclohexanone (4h)



Following the general procedure but using 5 equiv. of cyclohexanone, the title compound was obtained as a pale yellow solid in $90 \%$ yield, after two chromatographic purifications (one with $n$-hexane/EtOAc $8: 2$, one with $\mathrm{CHCl}_{3}$ ). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $65: 35$, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta=7.30-7.24\left(\mathrm{~m}, 4 \mathrm{H}_{\text {maj }}, 4 \mathrm{H}_{\text {min }}\right), 7.08\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right), 7.07\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right)$, $6.59\left(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right), 6.57\left(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}_{\min }\right), 6.33\left(\mathrm{dd}, \mathrm{J}=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right), 4.92$ (br s, $1 \mathrm{H}_{\text {min }}$ ), 4.73 (br d, $\mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}$ ), $4.64\left(\mathrm{br} \mathrm{dd}, \mathrm{J}=6.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right.$ ), $4.46(\mathrm{br} \mathrm{d}, \mathrm{J}=4.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}_{\min }\right)$, 2.81-2.70 (m, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\min }$ ), 2.46-2.25 (m, $\left.2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}\right), 2.08-1.45\left(\mathrm{~m}, 6 \mathrm{H}_{\text {maj }}, 6 \mathrm{H}_{\text {min }}\right)$. ${ }^{13}{ }^{3}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [aromatic signals not assigned] $=211.3(\mathrm{~min}), 210.1$ (maj), 146.6 (2C), 139.4, 138.9, 133.1, 132.7, 132.6, 130.5, 130.4, 128.9, 128.8, 128.7, 128.5, 120.5, 120.3, $115.3,114.8,113.6,113.2,57.9(\mathrm{~min}), 57.1(\mathrm{maj}+\mathrm{min}), 55.9(\mathrm{maj}), 42.4(\mathrm{maj}), 42.3(\mathrm{~min}), 32.0$ (min), 28.7 (maj), 27.9 (min), 26.8 (maj), 24.8 (maj), 24.3 (min). EI-MS: m/z $=381,383,385\left[\mathrm{M}^{+}\right.$,

5,4,2], 284,286,288 [ $\left.\mathrm{M}^{+}-97,100,90,30\right]$. The relative configuration of the major diastereoisomer was tentatively assigned as anti by analogy with the remaining compounds 4.

## 2-((4-methoxyphenyl)(phenylamino)methyl)cyclohexanone (4i)

 Following the general procedure, the title compound was produced in $76 \%$ yield, as determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude using an internal standard (bibenzyl). It proved not possible to obtain the pure title compound by chromatography on silica gel, due to extensive decomposition (i.e. formation of the $\alpha, \beta$-unsaturated ketone byproduct deriving from aniline elimination). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $61: 39$. The relative configuration of the major diastereoisomer was tentatively assigned as anti by analogy with the remaining compounds 4.

## 2-((3,4-dimethoxyphenyl)(phenylamino)methyl)cyclohexanone (4j)



Following the general procedure, the title compound was produced in $60 \%$ yield, as determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude using an internal standard (bibenzyl). It proved not possible to obtain the pure title compound by chromatography on silica gel, due to extensive decomposition (i.e. formation of the $\alpha, \beta$-unsaturated ketone byproduct deriving from aniline elimination). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $64: 36$. The relative configuration of the major diastereoisomer was tentatively assigned as anti by analogy with the remaining compounds 4.

## 2-((4-Chlorophenyl)((4-methoxyphenyl)amino)methyl)cyclohexanone (4k)



Following the general procedure but using 5 equiv. of cyclohexanone, the title compound was produced in $72 \%$ yield, as determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude using an internal standard (bibenzyl). It proved not possible to obtain the pure title compound by chromatography on silica gel, due to extensive decomposition (i.e. formation of the $\alpha, \beta$-unsaturated ketone byproduct deriving from aniline elimination) even when using deactivated silica (small $1-2 \%$ amounts of $\mathrm{Et}_{3} \mathrm{~N}$ in the eluent). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be 64:36. The relative configuration of the major diastereoisomer was tentatively assigned as anti by analogy with the remaining compounds 4.

## 3-((4-Chlorophenyl)(phenylamino)methyl)tetrahydro-4H-pyran-4-one (4l)



Following the general procedure, the title compound was obtained as a pale yellow solid in $92 \%$ yield, after two chromatographic purifications (one with $n$ hexane $/ \mathrm{Et}_{2} \mathrm{O} 5 / 5$, one with $n$-hexane/acetone $8 / 2$ ). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $65: 35$, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.37-7.35\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}\right), 7.33-7.29\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}\right), 7.28(\mathrm{br}$ $\mathrm{s}, 4 \mathrm{H}_{\text {min }}$ ), 7.13-7.04 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), 6.71-6.65 (m, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), 6.55-6.48 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), $4.86\left(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right.$ ), $4.80\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{maj}}\right.$ ), $4.70\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}\right.$ ), 4.19-4.12 (m, $1 \mathrm{H}_{\mathrm{maj}}$ ), 4.10-3.93 (m, 4H $\mathrm{H}_{\mathrm{min}}$ ), 3.88-3.76(m,2 $\mathrm{H}_{\mathrm{maj}}$ ), $3.72\left(\mathrm{dd}, \mathrm{J}=11.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right.$ ), $2.84(\mathrm{brq}, \mathrm{J}=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}$ ), 2.78-2.50 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), 2.43 (dtd, $\mathrm{J}_{\mathrm{d}}=14.6,1.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{t}}=4.2 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}$ ). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ [signals of both diastereoisomers] $=207.8,206.9,146.3,146.1,139.1$, $138.9,133.4,133.2,129.2,129.1,129.0,128.9,128.6,128.5,118.2$ (2C), 113.8, 113.7, 69.6, 68.6, $68.5,67.9,58.9,56.9,56.4,55.7,42.3,41.4$. EI-MS: $\mathrm{m} / \mathrm{z}=315,317\left[\mathrm{M}^{+}, 5,2\right], 216,218\left[\mathrm{M}^{+}-99\right.$, $100,30]$. The relative configuration of the major diastereoisomer was tentatively assigned as anti by analogy with the remaining compounds 4 .

## 2-((4-Chlorophenyl)((4-chlorophenyl)amino)methyl)cyclopentanone (4m)



Following the general procedure, the title compound was obtained as a pale yellow solid in $50 \%$ yield, after two chromatographic purifications (one with $n$ hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 6:4, one with $n$-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1). The diastereomeric ratio of the product, determined by ${ }^{1} \mathrm{H}$ NMR on the crude mixture, was found to be $61: 39$, favouring the anti-isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.31-7.29\left(\mathrm{~m}, 4 \mathrm{H}_{\mathrm{maj}}\right), 7.28-7.24(\mathrm{~m}$, $2 \mathrm{H}_{\text {min }}$ ), 7.21-7.16 (m, $2 \mathrm{H}_{\text {min }}$ ), 7.03-6.97 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), 6.47-6.39 (m, $2 \mathrm{H}_{\text {maj }}, 2 \mathrm{H}_{\text {min }}$ ), $5.53(\mathrm{br} \mathrm{d}, \mathrm{J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}$ ), $5.20\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}_{\text {maj }}\right), 4.64\left(\mathrm{br} \mathrm{dd}, \mathrm{J}=7.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}_{\text {min }}\right), 4.45\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}_{\text {maj }}\right)$, 2.75-2.65 (m, $1 \mathrm{H}_{\text {min }}$ ), 2.48-2.24 (m, $2 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), 2.17-2.02 (m, $1 \mathrm{H}_{\text {maj }}, 1 \mathrm{H}_{\text {min }}$ ), $1.98-1.58\left(\mathrm{~m}, 4 \mathrm{H}_{\text {maj }}\right.$, $\left.4 \mathrm{H}_{\text {min }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ [signals of both diastereoisomers] $=220.3,218.9,145.7$, 144.9, 139.8, 138.7 (2C), 133.3, 125.9, 128.9, 128.9, 128.8, 128.8, 128.4, 122.8, 122.3, 115.3, $114.7,58.7,57.4,53.8,52.9,39.7,39.2,26.7,25.9,20.6,20.4$. EI-MS: $m / z=333,335\left[M^{+}, 5,3\right]$, $250,252\left[\mathrm{M}^{+}-83,100,55\right]$. The relative configuration of the major diastereoisomer was tentatively assigned as anti by analogy with the remaining compounds 4 .

## Copies of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of products 4

2189_orcm. protone
Sample: 2189_cron.protone
F1le: bomo/rice1/8pettr1/ACja/a189_orcm.protone.fid
Dulae sequence: a2pul
Solvont: cacl 3
Tanp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
oporator: ricel

Relax. delay 1.000 eso
Dulce 45.0 degrees
Aeq. time 2.733 ce
Wiath 6398.0 Hz
8 repetitions
OBBERVE H1, 399.9245864 hHz
DATA DEOCBSSIMC
FT a1: 65536


4a

Total time $37 \mathrm{~min}, 3$ soc


2189_tras_earbon
F11e: bomo/rice1/8pottri/Roja/a189_fraE_carbon.fid
Dulae sequence: arpul
Solvent: caol 13
Tonp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Oporator: ricel
Horcury-400BB $\mathrm{F}_{\mathrm{n} 400}$

Rolax. dolay 1.000000
Duleo 45.0 degrees
hoq. timo 1.300 er
512 repotitions
observe C13, 100.5611145 KHz
DBCOODLE H1, 399.9265566 HHz
Dower 41 AB
cont 1nuouely on
WALIZ-16 modulated
DATA DROCBESTME
Line broadening 0.5 Hz
FT a180 65536
rotal time $3 \mathrm{hr}, 24 \mathrm{~min}, 34000$


1253_protone
F1le: bomo/r1ec1/8pattr1/Loronzo_Gerac1/L254_protone.f1d
Dulae sequence: arpul
Solvent: edol 3
Tonp. $25.0 \mathrm{C} / 298.1 \mathrm{k}$
oparator: ricel
File: 1/254_Protone
Horcury-400BB
Rolax. delay 1.000000
Dules 45.0 degrese
hoq. time 2.733 em
W1ath 6398.0 Hz
28 ropet 1tione
OBBERVE H1, 399.9245798
OBBERVE H1, 399.9245798 иH
DATA PROCB2SIMC
FT 01Ie 65536


Total time 37 nin, 3000
4b


1254_carbonio
Samplo: RP117_calificato_DBDT2
F1le: bomp/rice1/\&pettri/Lorenso_Ger2e1/L254_oarbonio.f1d
Pulae sequence: a2pul
Solvent: cacl 3
Tonp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
oporatori ricel
Horcury-400BB ${ }^{\text {nin }}$
Rolax. delay 1.000 eg
Dules 45.0 degrees
W1ath 24154.6 Hz
352 repetitione
OBSERVE C13, 100.5612171 кH
DECOUDLE H1, 399.9265566 KH:
Dower 41 AB
cont 1nuouely on
wailz-16 nodulated
WALIZZ-16 nodulate
data procersiag
Line broadening 0.5 Hz
FF olse 6553
Total timo 3 br, 24 nin, 34 ooc


## DLAA-DEC-COCR

Sample: DI/AA-DBC-cook
File: bomo/rice1/8pottri/Loronso_Gerac1/1g_48_oron_protone.fid
Dulae sequence: arpul
Solvent: edol3
Tonp. $25.0 \mathrm{c} / 298.1 \mathrm{~K}$
Oporatori rlect
File: 19_48_cron_protone
Horcury-400BB $\mathbf{n n}^{2} 00^{-}$

Rolax. dolay 1.000000
Dules 45.0 degrees
heq. time 2.733 cec
W1ath 6398.0 Hz
16 ropet itione
OBSBRVE H1, $399,9245755, ~$
OBSERVE H1, 399.9245755 KHz
DATA DEOCBESTMG
DTA DRCERSM 65536
FT a1: 6553
Total time $37 \mathrm{~min}, 3000$


4c

sta Carbon experinont
Sanple: RP159_lavato_Bt20_carbon1o
File: bomo/ricec1/8pottri/Loronso_Geraci/1g_48_cron_carbonio.fid
Dulae sequence: azpul
Solvont: edel3
Tonp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
oporator: ricol
File: 1g_48_orca_carbonio
Horcury-400BB $\mathbf{* n}^{-100 *}$
Rolax. dolay 1.000 eac
Dules 45.0 degrees
heq. time 1.300 eac
W1ath 24154.6 Bz

DBCOUDLE H1, 399.9265566 KHz
Dower 41 dB
cont inuouely on
WALTZ-16 modula
data peocegsiag
Line broadening 0.5 Hz
FT alse 65536
Total timo $3 \mathrm{br}, 19 \mathrm{~min}, 27$ oac


1/260_orom2_protone
File: bomo/rice1/8pottri/Lorenso_Gerac1/1g60_orcm2_protone.f14
Dulee sequence: anpul
Solvent: edol3
Tonp. 25.0 C / 298.1 K
operator: ricel
File: 1g60_oron2_protone
Horcury-400 BB $\mathbf{n n}^{-100 "}$

Rolax. delay 1.000000
Dulce 45.0 degreso
heq. time 2.733 emc
W1ath 6398.0 Hz
20 ropetitions
OBBERVE H1, 399.9245825 MHz
data deocersing
FT a1=e 65536
rotal timo $37 \mathrm{~min}, 3000$


1/260_orcma_carbonto
Sanpla: RP165_carbonio
F1le: bomo/ricel/8pottri/Lorenzo_Gerac1/1g60_orcm2_oarbonio.f1a
Dulae sequence: azpul
Solvent: cacl3
Tenp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$
operator: ricel
File: 1g60_oron2_carbonio
Horcury-400BB $*_{\text {n } 400}$

Rolax. delay 1.000 eso
Dules 45.0 degree
heq. timo 1.300 evc
wiath 24154.6 Bz
352 repetition
OBSERVE C13, 100.5611145 KHE
DBCOUDLE H1, 399.9265566 HH
Dower 41 AB
cont inuouely on
wALIZ-16 modulat
data deocessima
Line broadening 0.5 Hz
FT al:e 65536
Total timo $3 \mathrm{br}, 24 \mathrm{~min}, 3400$


| 220 | 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Std Proton parameters
File, home/ricci/spettri/Asja/pf.fid
Pulse Sequence: e2pul
Solvent, edc 13
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator, ricel
File: pf
Mercury-400BB "m400"

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 2.733 se
Width 6398.0 Hz
OBSERVE H1, 399.9245798 MHz
DATA PROCBSSIMG
FT size 65536
Total time $3 \mathrm{~min}, 14 \mathrm{sec}$

$4 \mathbf{e}$

std Carbon experiment
File, home/ricci/spettri/Aeja/pf_carbon.fid
Pulse Sequence, e2pul
Solvent, ode 13
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Pperator: ricel
Mercury-400BB
Relax. delay 1.000 sec
Pulse 45.0 degrees
Aeq. time 1.300 B
544 repetitions
OBSERVB C13, 100.5611145 MHz

Power 41 dB
continuously on
WzaLTz 16 modulated
WALTZ-16 modulat
DATA PROCBSSIMG
Line broadening 0.5 Hz
FT size 65536
Total time $3 \mathrm{hr}, 24 \mathrm{~min}, 34 \mathrm{sec}$




L/60_crom2_carbonto
Sample: RP165_carbonio
File: bomo/r10e1/8pottr1/Loronso_Gerac1/L262_oarbon10.f1d
Dulae sequence: arpul
Solvent: edel 3
Tonp. $25.0 \mathrm{c} / 298.1 \mathrm{~K}$
operator: ricel
File: L/262_carbonio
Horcury-400BB *n400"

Rolax. dolay 1.00000
Dules 45.0 degrees
heq. time 1.300 em
Wiath 24154.6 Bz
576 ropetition
OBBERVE C13, 100.5611145 hH:
DECOUDLE H1, 399.9265566 KHz
Dower 41 AB
continuouely on
KALIZ-16 nodula
Line broadening
Line broadoning 0.5 Hz
rotal timo $3 \mathrm{hr}, 24 \mathrm{nin}, 3400 \mathrm{c}$


| 220 | 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



Sanple: B127
F11e: bomo/r10e1/8pottr1/Lorenso_Gerae1/LE118_carbon1o_buono.f1a
Dulae sequence: azpul
Solvent: eaclu
Tonp. 25.0 c / 298.1 E
operator: ricel
F1le: L/2118_oarbonio_bueno
Horcury-400BB "n400"
Rolax. dolay 1.000000
Dules 45.0 degrees
Aeq. timo 1.300 em
Wiath 24154.6 Hz
Observe c13, 100.5611145 hH:
DBCOODLE H1, 399.9265566 MHI
Dower 41 AB
cont inuouely on
WALIZ-16 nodulated
DATA DROCBRSIAC
Line broadoning 0.5 Hz
ET o1=e 65536
Total timo $3 \mathrm{hr}, 24 \mathrm{~min}, 34$ ooc




Le74_protone
Sample: RP165_carbonio
File: bomo/rice1/8pottr1/Loranzo_Gerac1/1g74_protone.f1d
Dulae sequence: arpul
Solvent: edol3
Tonp. $25.0 \mathrm{c} / 298.1 \mathrm{~K}$
Operator: ricel
F1le: 1g74_protone
Horcury-400BB

Rolax. delay 1.000 e0c
Dules 45.0 degrees
Acq. time 2.733 em
Wiath 6398.0 Hz
20 repetitione
20 repetitione
OBERRE H1, $399.9245751 ~ h H: ~$
DATA DROCBESTMG
FT a1: 65536
Total timo $37 \mathrm{~min}, 3000$


4h


F1le: bomo/rice1/8pettri/Lorenso_Gerac1/1g74_earbon10.f1d
Dulae sequence: azpul
Solvent: edol3
Tonp. $25.0 \mathrm{C} / 298.1 \mathrm{~F}$
Oporator: ricel
F11e: 1g74_oarbonio
Horcury-400BB ${ }^{-n 400-}$
Rolax. dolay 1.000000
Pules 45.0 degreed
Aoq. timo 1.300 eo
wiath 24154.6 Hz
912 repotitions
OBsERVE C13, 100.5612164 kH
DRCOUDLE H1, 399.9265566 HHz
Dower 41 AB
cont inuouely on
NALTZ-16 modulat
data procresim
Line 65536 ing 0.5 Hz
FT alire 65536
rotal time $3 \mathrm{br}, 34 \mathrm{~min}, 47$ oec



## 1/119_oron_carbonio

sample: B103-fluorine
F1le: bomo/r1ee1/8pottr1/Lorenso_Gerae1/L2119_oron_oarbonio. F 1 a
Dulee sequence: azpul
Solvent: eacl 3
Tonp. 25.0 c / 298.1 K
porator: rice
Morcury-400BB - $\quad$ nden
Polax, Aelay 1.000 coc
Dules 45.0 degrees
Dulce 45.0 degrees
Req. timo 1.300 ea
wiath 24154.6 Hz
1216 repotiticno
OB8ERVE C13,
DRCOUDLE
H1
N
DECOUPLE H1, 399.9265566 KH:
Dower 41 AB
cont inuouely on
NATA DECCBRSTBZ
Lata prockesial Line broadening 0.5
FT a1se 65536
Total time 3 hr, $24 \mathrm{~min}, 34000$



1/2103_oron_carbon1o
F1le: bomp/r1001/8pettr1/Lorenso_Gerac1/Le103_oron_oarbonio.f1a
Dulee sequence: azpul
Solvent: cacl 3
Tonp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$
oporator: rice1
F1le: $1 / 2103$ _orco_carbonio
Horcury-400BB

Rolax. delay 1.000000
pulce 45.0 degrees
Acq. timo 1.300000
Wiath 24154.6 Hz
1472 repotition
OBsERVE C13, 100.5611145 hHz
DECOUDLE H1, 399.9265566 KHz
Dower 41 AB
cont inuouely on
DATA peocegetic
Line broadening
FT alse 65536 ing 0.5 Hz
rotal timo $3 \mathrm{hr}, 24 \mathrm{nin}, 3400$



[^0]:    ${ }^{1}$ H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512.

[^1]:    ${ }^{2}$ F. Quignard, R. Valentin and F. Di Renzo, New J. Chem., 2008, 32, 1300.
    ${ }^{3}$ E. Fourest and B. Volesky, Appl. Biochem. Biotech., 1997, 67, 33.

[^2]:    ${ }^{4}$ Y.-Y. Yang, W.-G. Shou and Y.-G. Wang, Tetrahedron, 2006, 62, 10079.

[^3]:    ${ }^{5}$ anti-isomer: Q.-X. Guo, H. Liu, C. Guo, S.-W. Luo, Y. Gu and L.-Z. Gong, J. Am. Chem. Soc., 2007, 129, 3790; syn isomer: X. Zheng, Y.-B. Qian and Y. Wang, Eur. J. Org. Chem., 2010, 515.
    ${ }^{6}$ B. Eftekhari-Sis, A. Abdollahifar, M. M. Hashemi and M. Zirak, Eur. J. Org. Chem., 2006, 5152.

