Tuning the magnetic, oxidation state and coordination behaviour of Iron and Cobalt Complexes on O/S Variation in mono-thio and dithio-oxamide chelating ligands

Luca Pilia, Davide Espa, Giorgio Concas, Francesco Congiu, Luciano Marchiò, Maria Laura Mercuri,

Angela Serpe and Paola Deplano

Supplementary Material

Figure S1. Drawing of HOMO and LUMO of Me₂pipto and Me₂pipdt ligands; the isosurfaces contour value is 0.04 and the energies are reported in electronvolts.

Figure S2. UV-vis spectra of complexes 1, 4 and 5 in CH₃CN solution.

Figure S3. UV-vis spectra of complexes 3 and 7 in CH₃CN solution.

Figure S4. Crystal packing of $[Fe(Me_2pipto)_2Cl_2]BF_4$ (1) projected along the *a* axis.

Figure S5. Crystal packing of $Ph_4P[Fe(Me_2pipto)(NCS)_4]$ (4) projected along the *a* axis. The packing comprises alternate layers of complex molecules and PPh_4^+ cations

Figure S6. Crystal packing of $[Fe(Me_2pipdt)_3](BF_4)_2$ (5) projected along the *b* axis. The packing consists of layers of complex molecules with embedded BF₄⁻ anions.

Figure S7. Crystal packing of $[Fe(Me_2pipdt)_3](I_3)_{1.8}(I)_{0.2}$ (6) projected along the *a* axis. Iodine atoms are depicted as purple spheres whereas the complex $[Fe(pipdt)_3]^{3+}$ in stick representation. Structural channels containing disordered iodine-based fragments run parallel to the *a* axis.

Figure S8. Crystal packing of $[Co(pipdt)_3]_2(I_3)_2(I)_4 \cdot 2I_2$ (7) projected along the *c* axis. Iodine atoms are depicted as purple spheres whereas the complex $[Co(pipdt)_3]^{3+}$ in stick representation. Structural channels containing disordered iodine-based fragments run parallel to the *c* axis.

Figure S9. Comparison between the X-ray (left) and B3LYP/6-31G(d) calculated (right) structures of complex 1.

Fe-S(11)	2.5022(7)/2.585	S(11)-Fe-O(21)	78.13(4)/ 75.90
Fe-S(12)	2.4595(6)/2.585	S(11)-Fe-Cl(2)	88.26(2)/90.17
Fe-O(21)	2.101(1)/ 2.151	S(11)-Fe-Cl(1)	101.78(3)/98.38
Fe-O(22)	2.071(2)/2.151	S(11)-Fe-S(12)	163.30(2)/165.98
Fe-Cl(1)	2.2699(7)/2.224	S(12)-Fe-O(22)	80.08(4)/75.90

Table S1. Comparison between experimental and *calculated*^a bond lengths (Å) and angles (°) for **1**.

Fe-Cl(2)	2.2592(6)/2.224	S(12)-Fe-O(21)	87.37(4)/93.21
C(11)-S(11)	1.675(2)/1.680	S(12)-Fe-Cl(2)	105.15(3)/98.38
C(21)-O(21)	1.248(2)/1.245	S(21)-Fe-Cl(1)	87.13(2)/90.15
C(12)-S(12)	1.679(2)/ 1.680	O(22)-Fe-Cl(2)	93.53(5)/89.15
C(22)-O(22)	1.258(2)/ 1.245	O(21)-Fe-Cl(2)	165.22(4)/161.51
C(11)-C(21)	1.510(3)/1.526	O(22)-Fe-Cl(1)	166.04(4)/161.58
C(12)-C(22)	1.508(3)/ 1.526	O(21)-Fe-Cl(1)	93.23(5)/89.16
		O(21)-Fe-O(22)	80.72(6)/79.72
S(11)-Fe-O(22)	89.35(5)/93.23	Cl(1)-Fe-Cl(2)	95.19(2)/105.09

^aCalculated using 6-31G(d) as basis set.

Table S2. Comparison of experimental and calculated^a high and low spin configurations bond lengths (Å) for 1.

Bond	Experimental	B3LYP HS	OLYP HS	B3LYP LS	OLYP LS
Fe-S(11)	2.5022	2.585	2.608	2.389	2.288
Fe-S(12)	2.4595	2.585	2.608	2.389	2.288
Fe-O(21)	2.101	2.151	2.225	1.989	1.981
Fe-O(22)	2.071	2.151	2.225	1.989	1.981
Fe-Cl(1)	2.2699	2.224	2.223	2.227	2.226
Fe-Cl(2)	2.2592	2.224	2.223	2.227	2.226

^aCalculated using 6-31G(d) as basis set.

Fe-S(11)	2.5022/2.585/ 2.389	S(11)-Fe-O(21)	78.13/75.90/82.54
Fe-S(12)	2.4595/2.585/ 2.389	S(11)-Fe-Cl(2)	88.26/90.17/ 92.06
Fe-O(21)	2.101/2.151/ 1.989	S(11)-Fe-Cl(1)	101.78/98.38/ 93.40
Fe-O(22)	2.071/2.151/ 1.989	S(11)-Fe-S(12)	163.30/ <i>165.98</i> / 171.91
Fe-Cl(1)	2.2699/2.224/ 2.227	S(12)-Fe-O(22)	80.08/75.90/ 82.59
Fe-Cl(2)	2.2592/2.224/ 2.227	S(12)-Fe-O(21)	87.37/93.21/ 91.81
C(11)-S(11)	1.675/1.680/ 1.686	S(12)-Fe-Cl(2)	105.15/98.38/ 93.34
C(21)-O(21)	1.248/1.245/1.253	S(21)-Fe-Cl(1)	87.13/90.15/ 92.11
C(12)-S(12)	1.679/ <i>1.680</i> / 1.686	O(22)-Fe-Cl(2)	93.53/89.15/ 87.32
C(22)-O(22)	1.258/1.245/ 1.253	O(21)-Fe-Cl(2)	165.22/161.51/ 174.20
C(11)-C(21)	1.510/1.526/1.517	O(22)-Fe-Cl(1)	166.04/ <i>161.58</i> / 174.29
C(12)-C(22)	1.508/1.526/1 .517	O(21)-Fe-Cl(1)	93.23/89.16/ 87.32
		O(21)-Fe-O(22)	80.72/ <i>79.72/</i> 90.70
S(11)-Fe-O(22)	89.35(5)/93.23/ 91.65	Cl(1)-Fe- $Cl(2)$	95.19/ <i>105.09</i> / 95.15

Table S3. Comparison of experimental and B3LYP calculated^a *high* and **low** spin configurations bond lengths (Å) and angles (°) for **2**.

^a Calculated using 6-31G(d) as basis set.

Table S4. Comparison of experimental and OLYP calculated^a *high* and **low** spin configurations bond lengths (Å) and angles (°) for **2**.

Fe-S(11)	2.5022/2.608/ 2.288	S(11)-Fe-O(21)	78.13/ 74.52/83.63
Fe-S(12)	2.4595/2.608/ 2.288	S(11)-Fe-Cl(2)	88.26/90.86/ 87.71
Fe-O(21)	2.101/ 2.225/1.981	S(11)-Fe-Cl(1)	101.78/99.57/ 91.01
Fe-O(22)	2.071/ <i>2.225</i> / 1.981	S(11)-Fe-S(12)	163.30/ <i>162.83</i> / 178.03
Fe-Cl(1)	2.2699/2.223/ 2.226	S(12)-Fe-O(22)	80.08/74.52/ 83.62
Fe-Cl(2)	2.2592/2.223/ 2.226	S(12)-Fe-O(21)	87.37/92.12/ 97.83
C(11)-S(11)	1.675/1.681/ 1.690	S(12)-Fe-Cl(2)	105.15/99.57/ 91.01
C(21)-O(21)	1.248/1.248/1.268	S(21)-Fe-Cl(1)	87.13/90.86/ 87.71
C(12)-S(12)	1.679/ <i>1.681</i> / 1.690	O(22)-Fe-Cl(2)	93.53/89. <i>37</i> / 89.22
C(22)-O(22)	1.258/ <i>1.248</i> / 1.268	O(21)-Fe-Cl(2)	165.22/ <i>160.99</i> / 168.60
C(11)-C(21)	1.510/ <i>1.528</i> / 1.491	O(22)-Fe-Cl(1)	166.04/ <i>160.99</i> / 168.59
C(12)-C(22)	1.508/ <i>1.528</i> / 1.491	O(21)-Fe-Cl(1)	93.23/89.37/ 89.23
		O(21)-Fe-O(22)	80.72/79.30/ 84.64
S(11)-Fe-O(22)	89.35(5)/92.12/ 97.84	Cl(1)-Fe- $Cl(2)$	95.19/ <i>105.27</i> / 98.36

^aCalculated using 6-31G(d) as basis set.

Functional	Configuration	Fe	0	S	Cl	Relative Energy
	High Spin	3.8838	0.0397	0.1552	0.3308	
B3LYP	ingn öpin		0.0397	0.1552	0.3309	0 kJmol ⁻¹
-	Low Spin	1.0742	-0.0027	-0.0393	0.0048	
	Low Spin		-0.0026	-0.0396	0.0053	99.85 kJmol ⁻¹
	High Spin	3.7284 0.0360	0.0366	0.1714	0.3900	
OLYP			0.0366	0.1714	0.1714 0.3901 0 kJmol ⁻¹	0 kJmol^{-1}
	Low Spin	1.0383	0.0001	-0.0223	0.0561	
	2011 Spin		0.0001	-0.0222	0.0561	94.45 kJmol ⁻¹

Table S5. Atomic Mulliken spin densities and relative energies of $[Fe(Me_2pipto)_2Cl_2]^+$ in doublet and sextet spin states.^a

^a Basis set 6-311+G(d,p).

Table S6. Atomic Mulliken spin densities and relative energies of $[Co(Me_2pipto)_3]^{2+}$ in doublet and quartet spin states.^a

Functional	Configuration	Со	0	S	Relative Energy
B3LYP		2.6738	0.0053	0.0532	
	High Spin		0.0178	0.1033	
	C 1		0.0291	0.0619	0 kJmol ⁻¹
		1.0197	0.0139	-0.0073	
	Low Spin		0.0135	-0.0066	
	Ĩ		0.0051	-0.0194	61.72 kJmol ⁻¹
OLYP		2.5144	0.0132	0.0946	
	High Spin		0.0506	0.1316	
	C 1		0.0310	0.1484	0 kJmol ⁻¹
		1.0558	0.0292	-0.0024	
	Low Spin		0.0289	-0.0004	
	-		0.0087	-0.0085	7.57 kJmol ⁻¹

^a Basis set 6-311+G(d,p).