Supporting Information

Zwitterionic group 4 aminophenolate catalysts for the polymerization of lactides and ethylene

Sagnik K. Roymuhury,^a Debashis Chakraborty, *a and Venkatachalam Ramkumar^b

^aDepartment of Chemistry, Indian Institute of Technology Patna, Patna-800 013, Bihar, India

^bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil

Nadu, India

Figure S1.¹H NMR (400 MHz, CDCl₃) of Compound 1

Figure S2.¹³C NMR (100 MHz, CDCl₃) of Compound 1

Figure S3. ESI mass spectrum of Compound 1

Figure S4.¹H NMR (400 MHz, CDCl₃) of Compound 2

Figure S5.¹³C NMR (100 MHz, CDCl₃) of Compound 2

Figure S6. ESI mass spectrum of Compound 2

Figure S7.¹H NMR (400 MHz, CDCl₃) of Compound 3

Figure S8.¹³C NMR (100 MHz, CDCl₃) of Compound 3

Figure S9. ESI mass spectrum of Compound 3

Figure S10.¹H NMR (400 MHz, CDCl₃) of Compound 4

Figure S11.¹³C NMR (100 MHz, CDCl₃) of Compound 4

Figure S12. ESI mass spectrum of Compound 4

Figure S13.¹H NMR (400 MHz, CDCl₃) of Compound 5

Figure S14.¹³C NMR (100 MHz, CDCl₃) of Compound 5

Figure S15. ESI mass spectrum of Compound 5

Figure S16.¹H NMR (400 MHz, CDCl₃) of Compound 6

Figure S18. ESI mass spectrum of Compound 6

576,1394

500

8-

Figure S19.¹H NMR (400 MHz, CDCl₃) of Compound 7

Figure S20.¹³C NMR (100 MHz, CDCl₃) of Compound 7

Figure S21. ESI mass spectrum of Compound 7

Figure S22.¹H NMR (400 MHz, CDCl₃) of Compound 8

Figure S23.¹³C NMR (100 MHz, CDCl₃) of Compound 8

Figure S24. ESI mass spectrum of Compound 8

Figure S25.¹H NMR (400 MHz, CDCl₃) of Compound 9

Figure S26.¹³C NMR (100 MHz, CDCl₃) of Compound 9

Figure S27. ESI mass spectrum of Compound 9

Figure S28. Homonuclear decoupled ¹H NMR (500 MHz, CDCl₃) spectrum of the methine region of PLA obtained using 1

Figure S29. rac-LA conversion vs time plot using 4 and 7: [M]₀/[Cat]₀= 200 at 140 °C

Entry	Cat.	[rac-LA] ₀ /	time ^a	Yield	$M_n(GPC)^b$	$M_n^{(\text{theoretical})c}$	TOF^d	
		$[Cat]_0$	(min)	(%)	(kg/mol)	(kg/mol)	(\min^{-1})	$M_{\rm w}/M_{\rm n}$
1	2	400/1	50	98	59.24	57.95	7.84	1.08
2	2	800/1	80	97	117.05	115.62	9.70	1.10
3	3	400/1	50	98	55.70	57.95	7.84	1.09
4	3	800/1	85	98	115.04	115.62	9.22	1.12
5	5	400/1	55	98	60.03	57.95	7.13	1.10
6	5	800/1	90	97	118.65	115.62	8.62	1.11
7	6	400/1	60	99	59.20	57.95	6.60	1.08
8	6	800/1	92	97	116.42	115.62	8.43	1.09
9	8	400/1	70	97	56.30	57.95	5.54	1.14
10	8	800/1	98	97	117.28	115.62	7.92	1.15
11	9	400/1	75	98	55.83	57.95	5.23	1.11
12	9	800/1	105	97	116.77	115.62	7.39	1.12

Table S1. Polymerization data for *rac*-LA catalyzed by complexes 2, 3, 4, 5, 8 and 9 indifferent $[rac-LA]_0/[Cat]_0$ ratio at 140 °C

^{*a*}Time of polymerization was measured by quenching the polymerization reaction when all the monomer were found to be consumed. ^{*b*}Measured by GPC at 27 °C in THF relative to polystyrene standards with Mark-Houwink corrections for M_n . ^{*c*} M_n ^(theoretical) at 100% = $[M]_0/[C]_0 \times$ molecular weight of monomer + molecular weight of end group. ^{*d*}TOFs were calculated as (mol of LA consumed) / (mol of catalyst × time of polymerization).

Figure S30. Plot of M_n and MWD vs. $[M]_0/[Cat]_0$ for *rac*-LA polymerization at 140 °C using **2**, **5** and **8**

Figure S31. Plot of M_n and MWD vs. $[M]_0/[Cat]_0$ for rac-LA polymerization at 140 °C using 3, 6 and 9

Figure S32. ¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between *rac*-LA and **1** in 10:1 ratio at 140 °C

Figure S33. Activity of 1 in different solvent in ethylene polymerization

Figure S34. Mulliken partial charges of complex 4

Figure S35. Mulliken partial charges of complex 5

S.	Compound	Bond Length (Å)			Bond Ang		
No.		Entry	X-ray	Calculated	Entry	X-ray	Calculated
1.	1	O1-Ti1	1.76(7)	1.75	O1-Ti1-Cl3	116.7(6)	115.0
2.		Cl1-Ti1	2.31(9)	2.32	O1-Ti1-Cl4	114.0(6)	112.8
3.		Cl2-Ti1	2.37(7)	2.36	Cl3-Ti1-Cl4	129.1(3)	128.4
4.		Cl3-Ti1	2.28(7)	2.29	Cl1-Ti1-Cl2	174.8(3)	175.1
5.		Cl4-Ti1	2.24(6)	2.25			
6.	4	O1-Zr1	1.95(2)	1.96	01-Zr1-N1	176.3(1)	178.4
7.		Cl1-Zr1	2.43(1)	2.41	Cl1-Zr1-Cl2	93.3(4)	91.7
8.		Cl2- Zr1	2.45(1)	2.44	Cl1-Zr1-Cl4	89.9(3)	88.5
9.		Cl3- Zr1	2.49(1)	2.48	Cl2-Zr1-Cl4	167.3(4)	170.4
10.		Cl4- Zr1	2.50(1)	2.49			
11.		N1- Zr1	2.34(3)	2.36			
12.	5	O1-Zr1	1.92(2)	1.88	01-Zr1-N1	168.9(1)	172.4
13.		Cl1-Zr1	2.51(9)	2.49	Cl2-Zr1-Cl3	87.1(3)	88.2
14.		Cl2-Zr1	2.52(1)	2.50	Cl3-Zr1-Cl5	85.9(3)	87.6
15.		Cl3- Zr1	2.43(1)	2.44	Cl5-Zr1-Cl4	89.6(3)	87.5
16.		Cl4- Zr1	2.44(1)	2.46			
17.		N1- Zr1	2.38(3)	2.36			

 Table S2. Selected X-ray and calculated bond lengths and bond angles of 1, 4 and 5