Supporting Information

Zwitterionic group 4 aminophenolate

catalysts for the polymerization of lactides

and ethylene

Sagnik K. Roymuhury, ${ }^{a}$ Debashis Chakraborty, ${ }^{* a}$ and Venkatachalam Ramkumar ${ }^{b}$
${ }^{a}$ Department of Chemistry, Indian Institute of Technology Patna, Patna-800 013, Bihar, India
${ }^{b}$ Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil
Nadu, India

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1}$

Figure S2. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{1}$

Figure S3. ESI mass spectrum of Compound 1

Figure S4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 2

Figure S5. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 2

Figure S6. ESI mass spectrum of Compound 2

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{3}$

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{3}$

Figure S9. ESI mass spectrum of Compound 3

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 4

Figure S11. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 4

Figure S12. ESI mass spectrum of Compound 4

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 5

Figure S14. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 5

Figure S15. ESI mass spectrum of Compound 5

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 6

Figure S17. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 6

Figure S18. ESI mass spectrum of Compound 6

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 7

Figure S20. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 7

Figure S21. ESI mass spectrum of Compound 7

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{8}$

Figure S23. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound $\mathbf{8}$

Figure S24. ESI mass spectrum of Compound $\mathbf{8}$

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 9

Figure S26. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Compound 9

Figure S27. ESI mass spectrum of Compound 9

Figure S28. Homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of the methine region of PLA obtained using 1

Figure S29. rac-LA conversion vs time plot using 4 and 7: $[\mathrm{M}]_{0} /[\mathrm{Cat}]_{0}=200$ at $140^{\circ} \mathrm{C}$

Table S1. Polymerization data for rac-LA catalyzed by complexes 2, 3, 4, 5, 8 and 9 in different $[\mathrm{rac}-\mathrm{LA}]_{0} /[\mathrm{Cat}]_{0}$ ratio at $140^{\circ} \mathrm{C}$

Entry	Cat.	$[\mathrm{rac}-\mathrm{LA}]_{0} /$ $[\mathrm{Cat}]_{0}$	time a $(\mathrm{~min})$	Yield $(\%)$	$M_{n}(\mathrm{GPC})^{b}$ $(\mathrm{~kg} / \mathrm{mol})$	$M_{n}^{(t h e o r e t i c a l) c}$ $(\mathrm{~kg} / \mathrm{mol})$	TOF^{d} $\left(\mathrm{~min}^{-1}\right)$	$M_{\mathrm{w}} / M_{\mathrm{n}}$
1	$\mathbf{2}$	$400 / 1$	50	98	59.24	57.95	7.84	1.08
2	$\mathbf{2}$	$800 / 1$	80	97	117.05	115.62	9.70	1.10
3	$\mathbf{3}$	$400 / 1$	50	98	55.70	57.95	7.84	1.09
4	$\mathbf{3}$	$800 / 1$	85	98	115.04	115.62	9.22	1.12
5	$\mathbf{5}$	$400 / 1$	55	98	60.03	57.95	7.13	1.10
6	$\mathbf{5}$	$800 / 1$	90	97	118.65	115.62	8.62	1.11
7	$\mathbf{6}$	$400 / 1$	60	99	59.20	57.95	6.60	1.08
8	$\mathbf{6}$	$800 / 1$	92	97	116.42	115.62	8.43	1.09
9	$\mathbf{8}$	$400 / 1$	70	97	56.30	57.95	5.54	1.14
10	$\mathbf{8}$	$800 / 1$	98	97	117.28	115.62	7.92	1.15
11	$\mathbf{9}$	$400 / 1$	75	98	55.83	57.95	5.23	1.11
12	$\mathbf{9}$	$800 / 1$	105	97	116.77	115.62	7.39	1.12

${ }^{a}$ Time of polymerization was measured by quenching the polymerization reaction when all the monomer were found to be consumed. ${ }^{b}$ Measured by GPC at $27^{\circ} \mathrm{C}$ in THF relative to polystyrene standards with Mark-Houwink corrections for $M_{\mathrm{n}} .{ }^{c} M_{\mathrm{n}}{ }^{(\text {theoretical) }}$ at $100 \%=$ $[\mathrm{M}]_{0} /[\mathrm{C}]_{0} \times$ molecular weight of monomer + molecular weight of end group. ${ }^{d}$ TOFs were calculated as (mol of LA consumed) / (mol of catalyst \times time of polymerization).

Figure S30. Plot of M_{n} and MWD $v s .[\mathrm{M}]_{0} /[\mathrm{Cat}]_{0}$ for $r a c$-LA polymerization at $140{ }^{\circ} \mathrm{C}$ using 2, 5 and 8

Figure S31. Plot of M_{n} and MWD vs. $[\mathrm{M}]_{0} /[\mathrm{Cat}]_{0}$ for $r a c$-LA polymerization at $140^{\circ} \mathrm{C}$ using 3, 6 and 9

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of the crude product obtained from a reaction between rac-LA and $\mathbf{1}$ in $10: 1$ ratio at $140^{\circ} \mathrm{C}$

Figure S33. Activity of $\mathbf{1}$ in different solvent in ethylene polymerization

Figure S34. Mulliken partial charges of complex 4

Figure S35. Mulliken partial charges of complex 5

Table S2. Selected X-ray and calculated bond lengths and bond angles of $\mathbf{1 , 4}$ and 5

S. No.	Compound	Bond Length (\AA)			Bond Angle (${ }^{\circ}$)		Calculated
		Entry	X-ray	Calculated	Entry	X-ray	
1.	1	O1-Ti1	1.76(7)	1.75	O1-Til-Cl3	116.7(6)	115.0
2.		C11-Ti1	2.31(9)	2.32	O1-Ti1-Cl4	114.0(6)	112.8
3.		Cl2-Ti1	2.37(7)	2.36	Cl3-Til-Cl4	129.1(3)	128.4
4.		Cl3-Ti1	2.28(7)	2.29	Cl1-Ti1-Cl2	174.8(3)	175.1
5.		C14-Ti1	2.24(6)	2.25			
6.	4	O1-Zr1	1.95(2)	1.96	O1-Zr1-N1	176.3(1)	178.4
7.		Cl1-Zr1	2.43(1)	2.41	$\mathrm{Cl1-Zr1-Cl2}$	93.3(4)	91.7
8.		C12- Zr 1	2.45(1)	2.44	$\mathrm{Cl1-Zr1-Cl4}$	89.9(3)	88.5
9.		Cl3- Zr 1	2.49(1)	2.48	$\mathrm{Cl2-Zr1-Cl4}$	167.3(4)	170.4
10.		Cl4- Zr1	2.50(1)	2.49			
11.		N1- Zr1	2.34(3)	2.36			
12.	5	O1-Zr1	1.92(2)	1.88	O1-Zr1-N1	168.9(1)	172.4
13.		Cl1-Zr1	2.51(9)	2.49	$\mathrm{Cl2}-\mathrm{Zr} 1-\mathrm{Cl} 3$	87.1(3)	88.2
14.		C12- Zr 1	2.52(1)	2.50	$\mathrm{Cl} 3-\mathrm{Zr} 1-\mathrm{Cl} 5$	85.9(3)	87.6
15.		Cl3- Zr 1	2.43(1)	2.44	C15-Zr1-Cl4	89.6(3)	87.5
16.		Cl4- Zr1	2.44(1)	2.46			
17.		N1- Zr1	2.38(3)	2.36			

