Supporting Information

Strengthening the Acceptor Properties of Thiadiazoloquinoxalines via Planarization

Shoufa Zhou, Cunbin An, Timea Stelzig, Sreenivasa Reddy Puniredd, Xin Guo, Wojciech Pisula,* and Martin Baumgarten*

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Corresponding authors: martin.baumgarten@mpip-mainz.mpg.de, pisula@mpip-mainz.mpg.de

Thermal properties

Figure S1. TGA analysis of compounds TQ3-5.

Differential scanning calorimetry (DSC) measurement

Figure S2. DSC analysis of compounds TQ3-5.

Photophysical spectra

Figure S3. UV-Vis absorption spectra of compounds TQ3-TQ5 as film.

Quantum mechanical calculations

Figure S4a. Theoretical* (black) and experimental** (red, cyclic voltammetry and UV-vis) energy levels for compounds **TQ3-5**.

NMR Analysis of the products

7.191 7.136 7.136 7.146 7.146 7.146 7.146 7.146 7.146 7.169 1.727 1.727 1.727 1.5316 1.13651.1365

Compound 1 in CD_2Cl_2 at 250 MHz

S6

2.797 2.767 2.736 1.822 1.822 1.797 1.767 1.767 1.737 1.737 1.737 1.738 0.905 0.880

S7

Compound TQ4 in $C_2D_2Cl_4$ at 500 MHz

Compound TQ5 in $C_2D_2Cl_4$ at 500 MHz

TOF MS ES+

Elemental Composition Report

Single Mass Analysis (displaying only valid results) Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 10 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Figure S5. TOF MS ES+ spectrum of compound dinitro derivative precursor.

Elemental Composition Report

Single Mass Analysis (displaying only valid results) Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 2 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Figure S6. TOF MS ES+ spectrum of compound 1.

Page 1

Page 1

Elemental Composition Report

Page 1

Figure S7. TOF MS ES+ spectrum of compound TQ5.

Figure S8. Equatorial integration of the 2DWAXS pattern in Figure 6c of **TQ5** and the assignment of the reflections by Miller indices. The intensity distributions are plotted as a function of the scattering vector s (defined as $s = 2\sin\theta/\lambda$, where 2 θ is the scattering angle).

1. Wang, E.; Hou, L.; Wang, Z.; Hellström, S.; Mammo, W.; Zhang, F.; Inganäs, O.; Andersson, M. R. Org. Lett. 2010, 12, 4470.

2. Stokes, K. K.; Heuzé, K.; McCullough, R.D. Macromolecules 2003, 36, 7114.

3. Meyer, A.; Sigmund, E.; Luppertz, F.; Schnakenburg, G.; Gadaczek, I.; Bredow, T.; Jester, S-S.; Höger, S.; Beilstein. J. Org. Chem, 2010, 6, 1180.