Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

1

Supporting Information

Synthesis, structure and catalytic activity of new homoleptic Lanthanide(III) tris-(cyclopropylethinylamidinates).

Farid M. Sroor,[†] Cristian G. Hrib,[†] Liane Hilfert,[†] and Frank T. Edelmann*, [†]

[†] Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.

Crystallographic Data

Crystal Data Collection, Structure Solution, and Refinement

The intensity data of **2d** and **4** were collected on a Stoe IPDS 2T diffractometer with MoK α radiation. The data were collected with the Stoe XAREA¹ program using ω -scans. The space groups were determined with the XRED32¹ program.

The structures were solved by direct methods (SHELXS-97) and refined by full matrix least-squares methods on F^2 using SHELXL-97.²

- 1. Stoe, XAREA Program for Xray Crystal Data collection, (XRED32 included in XAREA) (Stoe, 2002)
- (a) G. M. Sheldrick, SHELXL-97 Program for Crystal Structure Refinement, Universität Göttingen (Germany) 1997; (b) G. M. Sheldrick, SHELXS-97 Program for Crystal Structure Solution, Universität Göttingen (Germany) 1997.

Fig. S1 ¹H NMR spectrum (C_6D_6 , 25°C) of [c- C_3H_5 -C \equiv CC(NCy)₂]₃Sm (**2a**)

Fig. S2 ¹³C NMR spectrum (C₆D₆, 25°C) of [*c*-C₃H₅-C≡CC(NCy)₂]₃Sm (**2a**)

Fig. S3 2D (H, C- correlation via ¹*J*(C, H)) spectrum of [*c*-C₃H₅-C≡CC(NCy)₂]₃Sm (2a)

Fig. S5 ¹³C NMR spectrum (C_6D_6 , 25°C) of [c- C_3H_5 -C \equiv CC(N^{*i*}Pr)₂]₃Nd (**2b**)

50 45

40 35 30

25 20 15 10 5

0 ppm

85

80 75

70 65 60 55

110 105 100

95 90

(¹H-¹³C) HSQC spectrum of 2b

Fig. S6 2D (H, C- correlation via ${}^{1}J(C, H)$) spectrum of $[c-C_{3}H_{5}-C\equiv CC(N^{i}Pr)_{2}]_{3}Nd$ (**2b**)

Fig. S8 ¹³C NMR spectrum (C_6D_6 , 25°C) of [c- C_3H_5 -C \equiv CC(N^{*i*}Pr)₂]₃Sm (**2c**)

(¹H-¹³C) HSQC spectrum of 2c

Fig S9 2D (H, C- correlation via ${}^{1}J(C, H)$) spectrum of $[c-C_{3}H_{5}-C\equiv CC(N^{2}Pr)_{2}]_{3}Sm$ (2c)

Fig. S10 ¹³C NMR spectrum (C₆D₆, 25°C) of [*c*-C₃H₅-C≡CC(NⁱPr)₂]₃Ho (**2d**)

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	ip298 $C_{36}H_{57}HoN_6$ 738.81 153(2) K 0.71073 Å Triclinic P-1 a = 9.776(2) Å	α= 101.28(3)°
	b = 13.149(3) Å	$\beta = 105.35(3)^{\circ}$
Volume Z Density (calculated)	c = 16.983(3) A 1905.6(7) Å ³ 2 1.288 Mg/m^3	$\gamma = 108.19(3)^{\circ}$
Absorption coefficient F(000)	2.106 mm ⁻¹ 764	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 29.21° Absorption correction	0.40 x 0.40 x 0.20 mm ³ 2.31 to 29.21° -13<=h<=13, -18<=k<=18, - 21302 10209 [R(int) = 0.0600] 98.7 % None	-19<=1<=23
Refinement method Data / restraints / parameters	Full-matrix least-squares on 10209 / 38 / 461	F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole	1.045 R1 = 0.0343, wR2 = 0.0890 R1 = 0.0379, wR2 = 0.0907 0.0091(7) 2.496 and -1.758 e.Å ⁻³	

 Table S1 Crystal data and structure refinement of 2d

Ho-N(5)	2.342(2)	C(7)-C(8)	1.513(11)
Ho-N(3)	2.348(2)	C(7)-C(9)	1.529(11)
Ho-N(2)	2.351(3)	C(7')-C(9')	1.530(14)
Ho-N(4)	2.353(3)	C(7')-C(8')	1.536(13)
Ho-N(1)	2.359(3)	C(10)-C(11)	1.508(6)
Ho-N(6)	2.383(3)	C(10)-C(12)	1.517(6)
Ho-C(13)	2.755(3)	C(13)-C(14)	1.449(4)
Ho-C(1)	2.756(3)	C(14)-C(15)	1.185(4)
Ho-C(25)	2.773(3)	C(15)-C(16)	1.443(5)
N(1)-C(1)	1.312(4)	C(16)-C(18)	1.469(7)
N(1)-C(7')	1.42(3)	C(16)-C(17)	1.492(5)
N(1)-C(7)	1.481(14)	C(17)-C(18)	1.445(7)
N(2)-C(1)	1.327(4)	C(19)-C(21)	1.510(5)
N(2)-C(10)	1.460(4)	C(19)-C(20)	1.521(6)
N(3)-C(13)	1.333(4)	C(22)-C(23)	1.503(13)
N(3)-C(19)	1.458(4)	C(22)-C(24)	1.514(13)
N(4)-C(13)	1.331(4)	C(22')-C(23')	1.506(12)
N(4)-C(22')	1.44(2)	C(22')-C(24')	1.518(11)
N(4)-C(22)	1.472(18)	C(25)-C(26)	1.453(4)
N(5)-C(25)	1.333(4)	C(26)-C(27)	1.184(5)
N(5)-C(31)	1.461(3)	C(27)-C(28)	1.446(5)
N(6)-C(25)	1.324(3)	C(28)-C(29)	1.441(12)
N(6)-C(34)	1.461(4)	C(28)-C(30)	1.496(10)
C(1)-C(2)	1.461(5)	C(29)-C(30)	1.416(16)
C(2)-C(3)	1.182(6)	C(31)-C(33)	1.513(5)
C(3)-C(4)	1.496(7)	C(31)-C(32)	1.528(5)
C(4)-C(6)	1.441(8)	C(34)-C(36)	1.514(5)
C(4)-C(5)	1.470(7)	C(34)-C(35)	1.520(6)
C(5)-C(6)	1.440(9)		
N(5)-Ho-N(3)	153.11(10)	N(3)-Ho-N(1)	100.01(11)
N(5)-Ho-N(2)	98.77(10)	N(2)-Ho-N(1)	57.08(9)
N(3)-Ho-N(2)	103.76(10)	N(4)-Ho-N(1)	101.28(11)
N(5)-Ho-N(4)	106.03(10)	N(5)-Ho-N(6)	57.14(8)
N(3)-Ho-N(4)	57.74(9)	N(3)-Ho-N(6)	101.51(9)
N(2)-Ho-N(4)	150.92(10)	N(2)-Ho-N(6)	107.47(10)
N(5)-Ho-N(1)	104.51(10)	N(4)-Ho-N(6)	98.74(11)

Table S2Bond lengths [Å] and angles [°] of 2d

N(1)-Ho-N(6)	156.20(10)	C(22)-N(4)-Ho	144.0(9)
N(5)-Ho-C(13)	131.91(10)	C(25)-N(5)-C(31)	121.1(2)
N(3)-Ho-C(13)	28.89(9)	С(25)-N(5)-Но	93.91(17)
N(2)-Ho-C(13)	129.31(10)	С(31)-N(5)-Но	143.8(2)
N(4)-Ho-C(13)	28.85(9)	C(25)-N(6)-C(34)	120.5(3)
N(1)-Ho-C(13)	101.97(10)	C(25)-N(6)-Ho	92.33(17)
N(6)-Ho-C(13)	101.78(9)	C(34)-N(6)-Ho	146.68(19)
N(5)-Ho-C(1)	102.01(9)	N(1)-C(1)-N(2)	117.0(3)
N(3)-Ho-C(1)	104.81(10)	N(1)-C(1)-C(2)	120.9(3)
N(2)-Ho-C(1)	28.74(9)	N(2)-C(1)-C(2)	122.0(3)
N(4)-Ho-C(1)	127.90(11)	N(1)-C(1)-Ho	58.75(16)
N(1)-Ho-C(1)	28.39(9)	N(2)-C(1)-Ho	58.43(16)
N(6)-Ho-C(1)	133.32(10)	C(2)-C(1)-Ho	176.1(2)
C(13)-Ho-C(1)	119.61(10)	C(3)-C(2)-C(1)	176.1(5)
N(5)-Ho-C(25)	28.66(8)	C(2)-C(3)-C(4)	175.2(6)
N(3)-Ho-C(25)	128.45(9)	C(6)-C(4)-C(5)	59.3(4)
N(2)-Ho-C(25)	104.65(9)	C(6)-C(4)-C(3)	117.8(5)
N(4)-Ho-C(25)	104.39(10)	C(5)-C(4)-C(3)	116.0(5)
N(1)-Ho-C(25)	131.54(10)	C(6)-C(5)-C(4)	59.3(4)
N(6)-Ho-C(25)	28.49(8)	C(5)-C(6)-C(4)	61.4(4)
С(13)-Но-С(25)	119.97(9)	N(1)-C(7)-C(8)	110.0(9)
C(1)-Ho-C(25)	120.41(9)	N(1)-C(7)-C(9)	112.1(9)
C(1)-N(1)-C(7')	116.5(8)	C(8)-C(7)-C(9)	108.6(9)
C(1)-N(1)-C(7)	124.7(6)	N(1)-C(7')-C(9')	107.4(13)
C(7')-N(1)-C(7)	13.6(9)	N(1)-C(7')-C(8')	108.1(15)
C(1)-N(1)-Ho	92.86(19)	C(9')-C(7')-C(8')	105.3(13)
C(7')-N(1)-Ho	150.4(8)	N(2)-C(10)-C(11)	111.0(3)
C(7)-N(1)-Ho	141.5(5)	N(2)-C(10)-C(12)	108.6(3)
C(1)-N(2)-C(10)	120.7(3)	C(11)-C(10)-C(12)	112.2(4)
C(1)-N(2)-Ho	92.83(18)	N(4)-C(13)-N(3)	116.9(3)
С(10)-N(2)-Но	145.6(2)	N(4)-C(13)-C(14)	122.0(3)
C(13)-N(3)-C(19)	120.9(3)	N(3)-C(13)-C(14)	121.1(3)
С(13)-N(3)-Но	92.74(18)	N(4)-C(13)-Ho	58.56(15)
С(19)-N(3)-Но	144.9(2)	N(3)-C(13)-Ho	58.37(15)
C(13)-N(4)-C(22')	120.3(7)	С(14)-С(13)-Но	178.0(2)
C(13)-N(4)-C(22)	122.4(9)	C(15)-C(14)-C(13)	177.7(4)
C(22')-N(4)-C(22)	4.7(14)	C(14)-C(15)-C(16)	177.5(3)
C(13)-N(4)-Ho	92.59(18)	C(15)-C(16)-C(18)	120.0(4)
C(22')-N(4)-Ho	146.9(7)	C(15)-C(16)-C(17)	118.5(3)

C(18)-C(16)-C(17)	58.4(3)	N(5)-C(25)-Ho	57.43(15)
C(18)-C(17)-C(16)	60.0(3)	С(26)-С(25)-Но	177.5(2)
C(17)-C(18)-C(16)	61.6(3)	C(27)-C(26)-C(25)	172.3(3)
N(3)-C(19)-C(21)	109.5(3)	C(26)-C(27)-C(28)	176.0(4)
N(3)-C(19)-C(20)	109.8(3)	C(29)-C(28)-C(27)	120.1(6)
C(21)-C(19)-C(20)	110.2(4)	C(29)-C(28)-C(30)	57.6(7)
N(4)-C(22)-C(23)	110.4(13)	C(27)-C(28)-C(30)	118.2(5)
N(4)-C(22)-C(24)	109.6(13)	C(30)-C(29)-C(28)	63.1(7)
C(23)-C(22)-C(24)	109.0(13)	C(29)-C(30)-C(28)	59.2(6)
N(4)-C(22')-C(23')	109.6(12)	N(5)-C(31)-C(33)	108.2(3)
N(4)-C(22')-C(24')	108.8(13)	N(5)-C(31)-C(32)	110.2(3)
C(23')-C(22')-C(24')	108.7(12)	C(33)-C(31)-C(32)	110.7(3)
N(6)-C(25)-N(5)	116.6(3)	N(6)-C(34)-C(36)	109.0(3)
N(6)-C(25)-C(26)	123.3(3)	N(6)-C(34)-C(35)	109.3(3)
N(5)-C(25)-C(26)	120.1(2)	C(36)-C(34)-C(35)	110.0(3)
N(6)-C(25)-Ho	59.18(15)		

Fig. S11 Molecular structure of complex [*c*-C₃H₅-C≡CC(N^{*i*}Pr)₂]₃Ho (2d)

Fig. S12 ORTEP drawing of the molecular structure of $[c-C_3H_5-C\equiv CC(N/Pr)_2]_3$ Ho (2d)

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	ip376 $C_{21} H_{28} N_2$ 308.45 153(2) K 0.71073 Å Triclinic P-1 a = 9.7257(19) Å b = 10.383(2) Å c = 10.558(2) Å	$\alpha = 70.77(3)^{\circ}$ $\beta = 65.92(3)^{\circ}$ $\gamma = 70.83(3)^{\circ}$
Volume Z	895.5(3) Å ³ 2	
Density (calculated)	1.144 Mg/m ³	
Absorption coefficient F(000)	0.067 mm ⁻¹ 336	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 26.37° Absorption correction	0.34 x 0.23 x 0.22 mm ³ 2.13 to 26.37° -12<=h<=11, -12<=k<=12, - 7657 3625 [R(int) = 0.0479] 99.0 % None	-13<=1<=12
Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Full-matrix least-squares on 3625 / 157 / 267 1.071	F2
Final R indices [I>2sigma(I)] R indices (all data)	R1 = 0.0535, wR2 = 0.1411 R1 = 0.0717, wR2 = 0.1512	
Largest diff. peak and hole	0.198 and -0.223 e.Å ⁻³	

 Table S3 Crystal data and structure refinement of 4

N(1)-C(1)	1.364(2)	C(13)-C(14)	1.516(4)
N(1)-C(10)	1.451(3)	C(14)-C(15)	1.521(3)
C(1)-N(2)	1.275(2)	N(2)-C(16)	1.457(7)
C(1)-C(2)	1.451(2)	N(2)-C(16')	1.513(11)
C(2)-C(3)	1.195(3)	C(16)-C(21)	1.505(8)
C(3)-C(4)	1.436(2)	C(16)-C(17)	1.519(7)
C(4)-C(5)	1.393(3)	C(17)-C(18)	1.528(4)
C(4)-C(9)	1.394(2)	C(18)-C(19)	1.525(8)
C(5)-C(6)	1.379(3)	C(19)-C(20)	1.510(9)
C(6)-C(7)	1.381(3)	C(20)-C(21)	1.683(8)
C(7)-C(8)	1.379(3)	C(16')-C(17')	1.506(11)
C(8)-C(9)	1.381(3)	C(16')-C(21')	1.537(11)
C(10)-C(11)	1.515(3)	C(17')-C(18')	1.529(7)
C(10)-C(15)	1.515(3)	C(18')-C(19')	1.480(11)
C(11)-C(12)	1.518(4)	C(19')-C(20')	1.399(12)
C(12)-C(13)	1.508(4)	C(20')-C(21')	1.491(11)
C(1)-N(1)-C(10)	125.79(15)	C(10)-C(15)-C(14)	111.94(18)
N(2)-C(1)-N(1)	121.93(17)	C(1)-N(2)-C(16)	117.4(4)
N(2)-C(1)-C(2)	125.55(17)	C(1)-N(2)-C(16')	118.2(6)
N(1)-C(1)-C(2)	112.52(15)	C(16)-N(2)-C(16')	14.3(6)
C(3)-C(2)-C(1)	176.65(18)	N(2)-C(16)-C(21)	111.0(6)
C(2)-C(3)-C(4)	179.07(18)	N(2)-C(16)-C(17)	106.2(5)
C(5)-C(4)-C(9)	119.58(16)	C(21)-C(16)-C(17)	112.1(6)
C(5)-C(4)-C(3)	120.70(16)	C(16)-C(17)-C(18)	109.3(4)
C(9)-C(4)-C(3)	119.72(16)	C(19)-C(18)-C(17)	110.3(4)
C(6)-C(5)-C(4)	119.82(17)	C(20)-C(19)-C(18)	103.8(6)
C(5)-C(6)-C(7)	120.42(18)	C(19)-C(20)-C(21)	100.9(6)
C(8)-C(7)-C(6)	120.03(18)	C(16)-C(21)-C(20)	101.2(5)
C(7)-C(8)-C(9)	120.30(17)	C(17')-C(16')-N(2)	116.6(9)
C(8)-C(9)-C(4)	119.84(17)	C(17')-C(16')-C(21')	108.6(8)
N(1)-C(10)-C(11)	110.35(17)	N(2)-C(16')-C(21')	105.5(8)
N(1)-C(10)-C(15)	111.42(16)	C(16')-C(17')-C(18')	113.8(6)
C(11)-C(10)-C(15)	110.87(17)	C(19')-C(18')-C(17')	114.6(7)
C(10)-C(11)-C(12)	111.7(2)	C(20')-C(19')-C(18')	113.3(10)
C(13)-C(12)-C(11)	111.5(2)	C(19')-C(20')-C(21')	128.1(10)
C(12)-C(13)-C(14)	111.3(2)	C(20')-C(21')-C(16')	116.4(8)
C(13)-C(14)-C(15)	111.1(2)		

Table S4. Bond lengths [Å] and angles $[\circ]$ of 4

Fig. S14 ORTEP drawing of the molecular structure of C_6H_5 -C=C-C(NHCy)(NCy) (4)

NMR data of the propiolamidinates 3-5:

Ph-C≡C-C(NⁱPr)(NHⁱPr) (3). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 7.45 − 7.54 (m, 2H), 7.31 − 7.38 (m, 3H), 3.96 (sept, 2H), 1.17 (d, *J* = 6.5 Hz, 12H); ¹³C NMR (100.6 MHz, CDCl₃, 25 °C): δ = 179.7, 141.8, 131.9, 129.4, 128.5, 121.4, 88.9, 23.9.

Ph-C≡C-C(NCy)(NHCy) (4). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 7.23 − 7.62 (m, 5H), 3.61 (m, 2H), 0.93 − 2.00 (m, 20H); ¹³C NMR (100.6 MHz, CDCl₃, 25 °C): δ = 141.9, 132.1, 129.4, 126.6, 121.5, 79.8, 34.9, 26.0, 25.2.

c-C₃H₅-C≡C-C(NCy)(NHCy) (5). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 3.39 - 3.48 (m, 2H), 1.54 - 1.84 (m, 10H), 1.35 - 1.49 (m, 1H), 1.10 - 1.34 (m, 10H), 0.89 - 0.94 (m, 2H), 0.76 - 0.81 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃, 25 °C): δ = 141.9, 97.3, 77.3, 66.2, 34.2, 25.8, 24.9, 8.7, -0.4.