Supporting Information

Modulation of the Properties of Pyrrolo[3,4-c]pyrrole-1,4-dione Based Polymers

Containing 2,5-Di(2-thienyl)pyrrole Derivatives With Different Substitutions on the Pyrrole Unit

Rajalingam Agneeswari, ${ }^{a}$ Insoo Shin, ${ }^{b}$ Vellaiappillai Tamilavan, ${ }^{a}$ Dal Yong Lee, ${ }^{b}$ Shinuk Cho, ${ }^{c}$ Youngup Jin, ${ }^{d}$ Sung Heum Park, ${ }^{\text {*b }}$ and Myung Ho Hyun*a

[^0]Fig. S1. The XRD images of the polymers such as P(DKPP-TPTH), P(DKPP-TPTE), P(DKPPTPTA), and P(DKPP-TPTI) as a film state. - 4

Fig. S2. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTH}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a), concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTH}): \mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%)+3 \mathrm{vol} \%$ DIO blend (b), solvents for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTH}): \mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%)$ blend (c) and additives for $\mathrm{P}(\mathrm{DKPP}-$ TPTH): $\mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%$) blend (d). Note: All PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $11 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB) and except for that made from chlorobenzene (CB). 5

Fig. S3. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTE}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a) and concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTE}): \mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%)$ (b). Note: All PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $33 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB).

Fig. S4. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTA}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a) and concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTA}): \mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ (b). Note: All PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $33 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB). 9

Fig. S5. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTI}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a), concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTI}): \mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ blend (b), solvents for $\mathrm{P}(\mathrm{DKPP}-$ TPTI) $: \mathrm{PC}_{70} \mathrm{BM}\left(1: 3 \mathrm{wt} \%\right.$) blend (c), additives (2 vol\%) for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTI}): \mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ blend (d) and thermal post annealing for P(DKPP-TPTI): $\mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ blend (e). Note: All

PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $33 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB).

Table S1. Photovoltaic properties of the PSCs made from P(DKPP-TPTH) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTH): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.

Table S2. Photovoltaic properties of the PSCs made from P(DKPP-TPTE) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTE): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.8

Table S3. Photovoltaic properties of the PSCs made from P(DKPP-TPTA) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTA): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.

Table S1. Photovoltaic properties of the PSCs made from P(DKPP-TPTI) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTI): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.

Fig. S1. The XRD images of the polymers such as P(DKPP-TPTH), P(DKPP-TPTE), P(DKPPTPTA), and P(DKPP-TPTI) as a film state.

Fig. S2. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTH}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a), concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTH}): \mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%)+3 \mathrm{vol} \% \mathrm{DIO}$ blend (b), solvents for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTH}): \mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%)$ blend (c) and additives for $\mathrm{P}(\mathrm{DKPP}-$ TPTH): $\mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%$) blend (d). Note: All PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $11 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB) and except for that made from chlorobenzene (CB).

Table S1. Photovoltaic properties of the PSCs made from P(DKPP-TPTH) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTH): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.

Donor:Acceptor Ratio	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
1:1	5.82	0.59	52	1.79
1:1.5	7.79	0.59	50	2.28
1:2	7.98	0.56	59	2.63
1:2.5	7.59	0.55	53	2.23
1:3	6.32	0.59	50	1.86
Total Concentration	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
$11 \mathrm{mg} / \mathrm{ml}$	2.07	0.51	56	0.59
$22 \mathrm{mg} / \mathrm{ml}$	5.85	0.56	62	2.05
Solvent	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
CB	5.61	0.57	46	1.46
DCB	7.98	0.56	59	2.63
Additive	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
With DIO (3vol \%)	5.85	0.56	62	2.05
Without DIO	7.98	0.56	59	2.63

Fig. S3. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTE}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a) and concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTE}): \mathrm{PC}_{70} \mathrm{BM}(1: 2 \mathrm{wt} \%)$ (b). Note: All PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $33 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB).

Table S2. Photovoltaic properties of the PSCs made from P(DKPP-TPTE) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTE): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.

Donor:Acceptor Ratio	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\mathrm{oc}}(\mathrm{V})$	$\mathrm{FF}(\%)$	PCE (\%)
$1: 1$	1.73	0.77	29	0.39
$1: 2$	3.92	0.75	31	0.90
$1: 3$	3.59	0.75	33	0.88
Total				
Concentration	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\mathrm{oc}}(\mathrm{V})$	$\mathrm{FF}(\%)$	$\mathrm{PCE}(\%)$
$11 \mathrm{mg} / \mathrm{ml}$	3.92	0.75	31	0.90
$22 \mathrm{mg} / \mathrm{ml}$	1.69	0.74	33	0.42

Fig. S4. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTA}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a) and concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTA}): \mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%$) (b). Note: All PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $33 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB).

Table S3. Photovoltaic properties of the PSCs made from P(DKPP-TPTA) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTA): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.

Donor:Acceptor Ratio	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\mathrm{oc}}(\mathrm{V})$	$\mathrm{FF}(\%)$	PCE (\%)
$1: 1$	1.78	0.64	29	0.32
$1: 2$	2.20	0.45	28	0.28
$1: 3$	3.00	0.66	35	0.70
Total Concentration	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\mathrm{oc}}(\mathrm{V})$	$\mathrm{FF}(\%)$	$\mathrm{PCE}(\%)$
$22 \mathrm{mg} / \mathrm{ml}$	3.00	0.66	35	0.70
$33 \mathrm{mg} / \mathrm{ml}$	1.99	0.67	34	0.45

Fig. S5. $J-V$ Curves of the PSCs prepared from $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTI}): \mathrm{PC}_{70} \mathrm{BM}$ blend at different ratios (a), concentrations for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTI}): \mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ blend (b), solvents for $\mathrm{P}(\mathrm{DKPP}-$ TPTI): $\mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ blend (c), additives (2 vol\%) for $\mathrm{P}(\mathrm{DKPP}-\mathrm{TPTI}): \mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ blend (d) and thermal post annealing for P(DKPP-TPTI): $\mathrm{PC}_{70} \mathrm{BM}(1: 3 \mathrm{wt} \%)$ blend (e). Note: All PSCs were prepared with $22 \mathrm{mg} / \mathrm{ml}$ blend solution expect for that made from $33 \mathrm{mg} / \mathrm{ml}$ blend solution in dichlorobenzene (DCB).

Table S4. Photovoltaic properties of the PSCs made from P(DKPP-TPTI) by using the configuration of ITO/PEDOT:PSS/P(DKPP-TPTI): $\mathrm{PC}_{70} \mathrm{BM} / \mathrm{Al}$.

Donor:Acceptor Ratio	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
1:1	1.92	0.79	41	0.63
1:2	1.91	0.80	51	0.78
1:3	2.26	0.81	50	0.91
Total Concentration	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
$22 \mathrm{mg} / \mathrm{ml}$	2.26	0.81	50	0.91
$33 \mathrm{mg} / \mathrm{ml}$	1.00	0.78	47	0.37
Solvent	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
CB	0.85	0.64	48	0.26
DCB	2.26	0.81	50	0.91
Additive	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
Without DIO	2.26	0.81	50	0.91
$\begin{gathered} \text { With DIO (3 } \\ \text { vol\%) } \\ \hline \end{gathered}$	1.35	0.52	44	0.31
Post Annealing	$\mathrm{J}_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$\mathrm{V}_{\text {oc }}(\mathrm{V})$	FF (\%)	PCE (\%)
As Prepared	2.26	0.81	50	0.91
Post annealing $\left(120^{\circ} \mathrm{C}\right)$	0.77	0.69	39	0.21

[^0]: ${ }^{a}$ Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, Busan 690735, Republic of Korea
 ${ }^{b}$ Department of Physics, Pukyong National University, Busan 608-737, Republic of Korea
 ${ }^{\text {c }}$ Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749, Republic of Korea
 ${ }^{d}$ Department of Industrial Chemistry, Pukyong National University, Busan 608-739, Republic of Korea

