Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

1

Electronic supplementary Information

Surface modification of hydroxyapatite crystals by Mg-Al-CO₃-layered double hydroxides in HA/Mg-Al-CO₃-LDH nanocomposite

Zolfaghar Rezvani* and Masoumeh Akbari

Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

Table S1. Ca and P content of the HA/Mg-AL-CO3-LDH

Immersion time(Day)	%Ca	%P	[Ca]/[P]
0 (Initial sample)	29.3	13.4	1.69
1	30.9	14.0	1.71
4	33.9	15.0	1.75
7	36.6	16.1	1.75

nanocomposite after immersion in SBF.

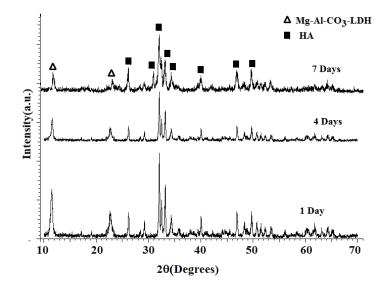


Fig. S1. X-ray diffraction patterns of HA/Mg-Al-CO₃-LDH nanocomposite after immersion in SBF for 1, 4, and 7 days.

As can be seen from Fig.S1, the relative intensity of HA/LDH peaks increased with increasing of immersion time from 1 day to 7 days. This results confirm that the HA crystals are formed on the surface of HA/Mg-Al-CO₃-LDH nanocomposite after immersion in SBF.