Supporting Information for

One-pot preparation of MnO₂/graphene-carbon nanotube hybrid

material for the removal of methyl orange from aqueous solutions

Yan Liu^a, Yaxi Tian^a, Chao Luo^{a,b}, Guijia Cui^a, Shiqiang Yan^{*a}

^a College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou

730000, PR China

^b CNOOC Tianjin Chemical Research & Design Institute, Tianjin 30000, PR China

^{*}Corresponding author. Tel./fax: +86 931 8912582 *E-mail address:* <u>yansq@lzu.edu.cn</u> (S. Yan)

Isotherm Model

The Langmuir model assumes a monolayer adsorption onto a homogeneous surface with a finite number of identical sites. Its linearized form is represented by the following equation ¹:

$$\frac{C_e}{q_e} = \frac{1}{bq_m} + \frac{C_e}{q_m}$$
(1)

where C_e (mg L⁻¹) is the solute equilibrium concentration, q_e (mg g⁻¹) is the amount of dye adsorbed per unit mass of the adsorbent at the equilibrium point, and q_m (mg g⁻¹) and b (L mg⁻¹) are the Langmuir constants related to the maximum adsorbate amount and adsorption affinity of the binding sites. When C_e/q_e is plotted versus C_e , the q_m and b constants can be determined from the slope and the intercept. Another parameter, R_L, called separation factor or equilibrium parameter, which can be used to express the efficiency of the adsorption, is defined as ²

$$R_L = \frac{l}{l + bC_0}$$

where *b* (L mg⁻¹) is the Langmuir constant, and C_0 (mg L⁻¹) is the initial MO concentration. The values of R_L express the isotherm shapes which can be unfavorable $(R_L \Box 1)$, linear $(R_L = 1)$, favorable $(0 \Box R_L \Box 1)$ or irreversible $(R_L = 0)$.

The Freundlich model can be considered to describe heterogeneous surfaces and multilayer adsorption systems, which can be given as follows:³

$$\ln q_e = \ln K_F + \frac{n}{n} \ln C_e \tag{3}$$

where q_e and C_e have the same definitions as those in the Langmuir equation cited above, and K_F and n are the Freundlich constants that indicate the adsorption capacity and the adsorption intensity, respectively. They can be obtained from the intercept and slope of the linear plot of $ln q_e$ versus $ln C_e$.

Fig. S1 The line scan results for C, Mn and O elements in the hybrid.

From Fig. S1, we can see that the edge of the curved petal-like sheets (in ~250 nm) is composed of only carbon without Mn and O, implying that the nanosheets are exactly graphene sheets.

Fig. S2 Langmuir adsorption isotherm plots for MO adsorption onto MnO₂/G-CNT hybrid material.

Fig. S3 Freundlich adsorption isotherm plots for MO adsorption onto MnO₂/G-CNT hybrid material.

Fig. S4 Separation factor of MO adsorbed onto MnO₂/G-CNT hybrid material at different temperatures.

Fig. S5 Plots of $\ln q_e/C_e vs. q_e$ for calculation of thermodynamic parameters.

Fig. S6 Van't Hoff plot for the adsorption of MO onto MnO₂/G-CNT hybrid material.

References

- 1. I. Langmuir, J. Am. Chem. Soc., 1918, 40, 1361-1403.
- 2. Kenneth R. Hall, Lee C. Eagleton, Andreas Acrivos and T. Vermeulen, *Ind. Eng. Chem. Fundam.*, 1966, **5**, 212-223.
- 3. M. Ahmaruzzaman and S. Laxmi Gayatri, *Chem. Eng. J.*, 2010, **158**, 173-180.