Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

SUPPORTING INFORMATION

Title: Aminobenzocoumarinylmethyl esters as photoactive precursors for the release of butyric acid

Authors: Ana M. S. Soares, Graham Hungerford, Susana P. G. Costa, and M. Sameiro T. Gonçalves

TABLE OF CONTENTS

page

1. Absorption for compounds 2 , 3a , b and 4a , b , EEM and decay associated spectra for compound 2 in MeOH/HEPES (80:20) and difference between frontier orbitals for compounds 3a , b and 4a , b	2
2. ¹ H and ¹³ C NMR spectra of compounds 1 , 2 , 3a , b and 4a , b	4
3. UV/Vis absorption and fluorescence spectra for compounds 1, 2, 3a,b and 4a,b in ethanol	10
4. HPLC chromatograms for the photolysis of compounds 2, 3a,b and 4a,b	11

1. Absorption for compounds **2**, **3a**,**b** and **4a**,**b**, EEM and decay associated spectra for compound **2** in MeOH/HEPES (80:20) and difference between frontier orbitals for compounds **3a**,**b** and **4a**,**b**

Figure S1. Absorption spectra (measured using a Shimadzu UV-1800) for compounds **2-4** in MeOH/HEPES (80:20) (left) and EEM for **2** in same solvent mixture (recorded using a FluoroLog 3) (right).

Figure S2. Decay associated spectra for compound **2** in MeOH/HEPES (80:20). The shorter-lifetime component (associated with Raman scattering at 445 nm) is omitted in calculation of the "sum" spectrum. Measured using a DeltaFlex fluorescence lifetime system with excitation at 392 nm.

Figure S3. Difference between frontier orbitals (HOMO and LUMO; blue – positive, red – negative) for compounds **3a**,**b** and **4a**,**b**. Calculated using ArgusLab 4.0.1 software (Mark Thompson & Planaria Software LLC).

3. UV/Vis absorption and fluorescence spectra for compounds 1, 2, 3a-b and 4a-b in ethanol

4. HPLC chromatograms for the photolysis of compounds 2, 3a,b and 4a,b

HPLC chromatogram of the photolysis of conjugate **2** (retention time 4.4 min) with eluent ACN/H₂O (75:25) at a flow rate of 0.8 mL/min, λ_{det} = 293 nm.

HPLC chromatogram of the photolysis of conjugate **3a** (retention time 6.3 min) with eluent ACN/H₂O (75:25) at a flow rate of 0.8 mL/min, λ_{det} = 291 nm.

HPLC chromatogram of the photolysis of conjugate **3b** (retention time 13.7 min) with eluent ACN/H₂O (75:25) at a flow rate of 0.8 mL/min, λ_{det} = 290 nm.

HPLC chromatogram of the photolysis of conjugate **4a** (retention time 7.9 min) with eluent ACN/H₂O (75:25) at a flow rate of 0.8 mL/min, λ_{det} = 298 nm.

HPLC chromatogram of the photolysis of conjugate **4b** (retention time 13.4 min) with eluent ACN/H₂O (75:25) at a flow rate of 1.0 mL/min, λ_{det} = 295 nm.