Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary Information

Experimental and Theoretical Studies of the ancillary ligand (*E*)-2-((3-aminopyridin-4-ylimino)-methyl)-4,6-diterbutylphenol in Rhenium(I) core

Alexander Carreño^{1,10*}, Manuel Gacitua², Eduardo Schott³, Ximena Zarate⁴, Juan Manuel Manriquez³,

Marcelo Preite⁵, Sonia Ladeira⁶, Annie Castel⁶, Nancy Pizarro⁷, Andrés Vega^{7,8}, Ivonne Chavez⁹,

Ramiro Arratia-Perez^{1,10}

¹Doctorado en Fisicoquímica Molecular, Center of Applied Nanosciences (CENAP), Universidad Andres Bello, Ave. Republica 275, Santiago, Chile, Zip Code: 8370146.

²Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile. Current addres: Center of Applied Ecology and Sustainability (CAPES), Universidad Adolfo Ibáñez, Peñalolén, Chile

³Laboratorio de Bionanotecnología, Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Chile.

⁴Dirección de Postgrado e Investigación, Universidad Autónoma de Chile, Av. Pedro de Valdivia 641, Santiago, Chile.

⁵Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile.

⁶Université Paul Sabatier, Institut de Chimie de Toulouse (FR 2599), 118 route de Narbonne, 31062 Toulouse cedex 9, France.

⁷Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello.

⁸Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA

⁹ Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile.

¹⁰Núcleo Milenio de Ingeniería Molecular para Catálisis y Biosensores, ICM

Figure S1. ¹HNMR spectra of L in acetonitrile deutered.

Figure S2. ¹HNMR of **C1** in acetonitrile deutered.

Figure S3. ¹HNMR of C2 in acetonitrile deutered.

Figure S4. HHCOSY of C2 in acetonitrile deutered.

Figure S5. Mass spectra of C2.

Figure S6. CV working-window study of **deeb**. Interface: Interface: Pt | $1.0 \ge 10^{-5}$ M of analyte + $1.0 \ge 10^{-4}$ M TBAPF₆ in anhydrous CH₃CN under an argon atmosphere.

Figure S7. CV working-window study of $Re(CO)_5Br$. Interface: Interface: Pt | 1.0 x 10⁻⁵ M of analyte + 1.0 x 10⁻⁴ M TBAPF₆ in anhydrous CH₃CN under an argon atmosphere.

Figure S8. CV working-window study of C1. Interface: Interface: Pt | $1.0 \ge 10^{-5}$ M of analyte + $1.0 \ge 10^{-4}$ M TBAPF₆ in anhydrous CH₃CN under an argon atmosphere.

Figure S9. CV working-window study of C2. Interface: Interface: Pt | $1.0 \ge 10^{-5}$ M of analyte + $1.0 \ge 10^{-4}$ M TBAPF₆ in anhydrous CH₃CN under an argon atmosphere.

Figure S10. Two sides of view of the highest occupied orbitals of the oxidized and reduced states for deeb, C1 and C2.

Figure S11. Optimized structure of C2 without the hydrogen bond in the L.

Table S1. Composition in percentage (%) of the frontier molecular orbitals for C1. The HOMO is indicated in bold.

Orb.	C≡O	Br	Re	deeb
80 γ1/2	0	0	0	100
79γ1/2	0	0	0	100
78 γ1/2	3	3	4	90
77γ1/2	37	48	11	0
76 γ1/2	9	75	16	0
75γ1/2	29	9	60	2
64 γ1/2	1	0	2	97

Table S2. Composition in percentage (%) of the frontier molecular orbitals for C2. The HOMO is indicated in bold.

Orb.	C≡O	L	Re	deeb
130γ1/2	100	0	0	0
126 γ1/2	14	48	4	34
123 γ1/2	1	99	0	0
121 γ1/2	0	0	0	100
120γ1/2	4	0	3	94
119 γ1/2	0	100	0	0
118γ1/2	9	88	3	0
116 γ1/2	6	76	18	0
114γ1/2	30	4	65	2
111γ1/2	0	100	0	0