Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Enolato-bridged dinuclear Cu(II) complex with a coumarin-assisted

precursor : Spectra, magnetism and biological study

Kuheli Das^a, Uttam Panda^a, Amitabha Datta^{b,*}, Suman Roy^a, Sudipa Mondal^a, Chiara Massera^c, Tulin Askun^d, Pinar Celikboyun^d, Eugenio Garribba^e, Chittaranjan Sinha^{a,*}, Kushi Anand^f, Takashiro Akitsu^g, Kana Kobayashi^g

Scheme SI. Synthesis of the ligand, H₂L.

Figure S1. Ortep view of complex 1 with the atom labeling scheme. Ellipsoids are drawn at the 40% probability level.

UV-Vis Spectra

Figure S2. UV-Vis spectra of complex 1 and the ligand, H_2L .

Figure S3. ¹H NMR Spectra of H_2L .

Figure S4. Antimycobacterial activity of H₂L, complex 1 and standard drugs.

Figure S5. Best docked pose of ligand (H_2L) (2D view) and enoyl acyl carrier protein reductase (PDB id 4U0K) of *M. tuberculosis* H37R_{v.}

Figure S6. Best docked pose of ligand (H_2L) (3D view) and enoyl acyl carrier protein reductase (PDB id 4U0K) of *M. tuberculosis* H37R_{v.}

	α -molecular orbitals of 1				β-molecular orbitals of 1			
ΜΟ-α	Energy	DMF	L	Cu	Energy	DMF	L	Cu
	(eV)				(eV)			
LUMO+5	-0.77	12	87	01	-1.67	00	99	01
LUMO+4	-0.84	09	91	00	-1.7	00	99	01
LUMO+3	-1.67	00	100	00	-1.96	00	99	01
LUMO+2	-1.7	00	99	01	-1.98	01	96	03
LUMO+1	-1.99	00	99	01	-2.73	04	36	60
LUMO	-2.02	01	98	01	-2.75	04	34	62
НОМО	-5.51	00	98	02	-5.45	01	96	03
HOMO-1	-5.7	00	98	02	-5.66	00	98	02
НОМО-2	-6.03	00	99	01	-6.01	00	99	01
НОМО-3	-6.07	00	99	01	-6.04	00	99	01
HOMO-4	-6.37	04	82	14	-6.72	01	87	12
HOMO-5	-6.4	05	80	15	-6.89	01	97	02

Table S1. Selected Orbital Energies and Orbital Composition for α and β spin state of $Cu_2[(L)_2(DMF)_2]$ (1).

Table S2. Selected	electronic	excitation	for	$Cu_2[(L)_2(I)]$	OMF_{2} (1).
--------------------	------------	------------	-----	------------------	----------------

Excitation	Wavelength	f	Key Transitions	Character
energy	(nm)			
(eV)				
		a m	olecular orbitals	
3.0553	405.80	0.5762	(40%) HOMO→LUMO	ILCT
3.2725	378.87	0.1586	(45%) HOMO-1→LUMO+1	ILCT
3.4080	363.81	0.0350	(39%) HOMO→LUMO+2	ILCT
3.6000	344.40	0.9203	(16%) HOMO-2→LUMO+1	ILCT
3.6977	335.30	0.3549	(45%) HOMO-1→LUMO+3	ILCT
3.7110	334.10	0.0395	(33%) HOMO-2→LUMO+1	ILCT
3.9342	315.14	0.0314	(23%) HOMO-5→LUMO	ILCT
4.1335	299.95	0.1194	(26%) HOMO-4→LUMO+3	ILCT

Excitation	Wavelength	f	Key Transitions	Character
energy	(nm)			
(eV)				
		β-mo	blecular orbitals	
2.3616	524.99	0.0046	(31%) HOMO→LUMO+1	ILCT, LMCT
2.8512	434.85	0.0025	(58%) HOMO-3→LUMO+1	ILCT, LMCT
3.0553	405.80	0.5762	(46%) HOMO→LUMO+2	ILCT
3.2725	378.87	0.1586	(31%)HOMO-1→LUMO+3	ILCT
3.3723	367.66	0.0959	(42%) HOMO→LUMO+4	ILCT
3.4395	360.47	0.0201	(27%) HOMO-9→LUMO+1	ILCT, LMCT
4.1335	299.95	0.1194	(26%) HOMO-4→LUMO+3	ILCT

Table S3. Selected electronic excitation for $Cu_2[(L)_2(DMF)_2]$ (1).

Table S4.Antimycobacterial activity (MIC and MBC, $\mu g/ml$) of H_2L and
complex 1.

Compounds	The minima		al in	hibitory	The	minima	bact	ericidal	
	concentration (MIC)				concentration (MBC)				
	M. tuberculosis		M. tuberculosis		Clinical	isolate	Clinical	isolate	
	RA		RV		1	1		2	
	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	
H ₂ L	52.96	211.84	52.96	211.84	52.96	105.92	52.96	423.68	
1	52.96	105.92	52.96	52.96	52.96	52.96	52.96	105.92	
Concentrations of antimycobacterial drugs (µmol/L)									
Streptomisin	4.30	8.53	4.30	4.30	2.59	34.29	4.30	-	
İzoniazid	3.37	6.81	0.86	6.81	3.37	6.81	3.37	3.37	

Table S5. Details of the docking studies of H_2L with the enoyl acyl carrier protein reductase of *M. tuberculosis* H37Rv (PDB ID: 4U0K).

Compound	CDOCKER	Binding	Ligand	Protein	Energy of
	interaction	energy	energy	energy	protein ligand
	energy	(Kcal/mol)	(Kcal/mol)	(Kcal/mol)	complex (Kcal/mol)
4U0K@ H ₃ L	-40.12	-209.91	0.72	-10272.18	-10481.40

Energy $_{Binding}$ = Energy $_{Complex}$ - Energy $_{Ligand}$ - Energy $_{Receptor}$

Table S6. Details of the interactions present in the most stable protein-ligand complex

for the ligand, H₂L.

Compound		Hydrog	en bonds		Ionic interaction			
	No. of hydrogen bonds	End 1	End 2	Bond Distances Å	No. of ionic interactions	End 1	End 2	Bond Distances Å
H ₂ L	1	Thr196	O-atom of carbonyl group in coumarin moiety	1.99	1	Lys165	O-atom of -OH group in coumarin moiety	1.59