Reactivity of halfsandwich rare-earth metal methylaluminates toward potassium (2,4,6-tri-*tert*-butylphenyl)amide and 1adamantylamine

Dorothea Schädle,^{*a*} Markus Enders,^{*b*} Christoph Schädle,^{*a*} Cäcilia Maichle-Mössmer,^{*a*} Karl W. Törnroos,^{*c*} and Reiner Anwander*^{*a*}

^a Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany. Fax: +49 7071 29 2436; Tel: +49 7071 29 72069; E-mail: reiner.anwander@unituebingen.de

^b Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.

^c Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.

	2a	3	4	5	7	8
formula	$C_{76}H_{140}Al_2N_2Y_2$	C ₃₅ H ₆₁ AlNOY	C ₂₆ H ₄₂ Al ₂ LuN	C ₃₉ H ₅₆ AlLuN ₂	C ₃₂ H ₄₆ AlN ₂ Y	C ₁₃ H ₂₆ AlN
$M_r [g mol^{-1}]$	1313.69	627.74	597.53	754.80	574.60	223.33
T [K]	100(2)	123(2)	173.(2)	153.(2)	100(2)	100(2)
λ[Å]	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
cryst system	monoclinic	monoclinic	triclinic	triclinic	triclinic	monoclinic
space group	C2/c	P2 ₁ /n	P-1	P-1	P-1	P2 ₁ /c
a [Å]	49.639(1)	19.151(1)	9.1367(3)	12.1090(3)	9.4592(4)	6.8749(3)
b [Å]	12.3116(3)	8.9975(5)	12.1049(4)	13.6700(3)	12.2445(5)	19.6763(8)
c [Å]	35.971(2)	24.183(1)	13.2803(4)	13.7168(3)	14.0256(6)	12.1047(5)
α [°]	90	90	77.756(1)	105.191(1)	68.379(2)	90
β [°]	131.598(1)	108.305(1)	81.137(1)	113.695(1)	80.349(1)	124.608(2)
γ [°]	90	90	88.071(1)	106.489(1)	82.208(2)	90
V [Å ³]	16439.4	3956.0(4)	1418.24(8)	1801.47(7)	1484.0(1)	1347.7(1)
Ζ	8	4	2	2	2	4
F(000)	5728	1352	604	776	608	496
$\rho_{calcd} [g \ cm^{-3}]$	1.063	1.054	1.399	1.392	1.286	1.101
μ [mm ⁻¹]	1.463	1.519	3.554	2.792	2.017	0.123
$R_1 (obsd)^a$	0.0687	0.0413	0.0143	0.0179	0.0346	0.0383
$wR_2 (all)^b$	0.1579	0.0950	0.0372	0.0420	0.0933	0.1049
S ^c	1.165	1.031	1.106	1.034	1.035	1.113

Table S1. Crystallographic Parameters for complexes 2a, 3, 4, 5, 7 and 8.

 ${}^{a}R1 = \Sigma(||F_{0}| - |F_{c}||) / \Sigma|F_{0}|, F_{0} > 4\sigma(F_{0}). {}^{b}wR2 = \{\Sigma[w(F_{0}^{2} - F_{c}^{2})^{2} / \Sigma[w(F_{0}^{2})^{2}]\}^{1/2}. {}^{c}S = [\Sigma w(F_{0}^{2} - F_{c}^{2})^{2} / (n_{0} - n_{p})]^{1/2}.$

Figure S1. ¹H NMR spectrum (500 MHz) of $\{Cp*Y[NH(mes*)](AlMe_4)\}_2$ (2a) in C_6D_6 at 26 °C.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum (126 MHz) of {Cp*Y[NH(mes*)](AlMe₄)}₂ (2a) in C₆D₆ at 26 °C.

Figure S3. ¹H NMR spectrum (500 MHz) of $\{Cp*La[NH(mes*)](AlMe_4)\}_x$ (2b) in C_6D_6 at 26 °C (+ impurity).

Figure S4. ¹³C{¹H} NMR spectrum (126 MHz) of {Cp*La[NH(mes*)](AlMe₄)}_x (2b) in C₆D₆ at 26 °C (+ impurity).

Figure S5. ¹H NMR spectrum (500 MHz) of $Cp^{Q}Lu(AlMe_{4})_{2}$ (4) in $C_{6}D_{6}$ at 26 °C (+ *n*-hexane).

Figure S6. ¹³C{¹H} NMR spectrum (126 MHz) of $Cp^{Q}Lu(AlMe_{4})_{2}$ (4) in $C_{6}D_{6}$ at 26 °C (+ *n*-hexane).

Figure S7. ¹H NMR spectrum (500 MHz) of $Cp^{Q}LuMe\{NH[C_{6}H_{2}tBu_{2}-2,4-(CMe_{2}CH_{2})-6]\}(AlMe_{2})$ (5) in $C_{6}D_{6}$ at 26 °C (+ contaminated by a small amount of decomposition material).

Figure S8. ¹H¹³C HSQC NMR spectrum (500 MHz) of $Cp^{Q}LuMe\{NH[C_{6}H_{2}tBu_{2}-2,4-(CMe_{2}CH_{2})-6]\}(AlMe_{2})$ (5) in $C_{6}D_{6}$ at 26 °C (1D ¹³C NMR spectrum (126 MHz) on the left edge of the contour plot, 1D ¹H NMR spectrum (500 MHz) shown on the top).

Figure S9. ¹H¹³C HMBC NMR spectrum (500 MHz) of $Cp^{Q}LuMe\{NH[C_{6}H_{2}tBu_{2}-2,4-(CMe_{2}CH_{2})-6]\}(AlMe_{2})$ (5) in $C_{6}D_{6}$ at 26 °C (1D ¹³C NMR spectrum (126 MHz) on the left edge of the contour plot, 1D ¹H NMR spectrum (500 MHz) shown on the top).

Figure S10. ¹H NMR spectrum (400 MHz) of $Cp^{Q}Y[NH(Ad)](AlMe_3)$ (7) in C_6D_6 at 26 °C (+ co-product 8).

Figure S11. ¹³C{¹H} NMR spectrum (126 MHz) of $Cp^{Q}Y[NH(Ad)](AlMe_3)$ (7) in C_6D_6 at 26 °C.

Figure S12. ¹H NMR spectrum (500 MHz) of Me₃Al·NH₂(Ad) (8) in C₆D₆ at 26 °C.

Figure S13. ${}^{13}C{}^{1}H$ NMR spectrum (126 MHz) of Me₃Al·NH₂(Ad) (8) in C₆D₆ at 26 °C.