Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information For:

Synthesis of Unsymmetrical 5,6-POCOP'-Type Pincer Complexes of Nickel (II):

Impact of Nickelacycle Size on Structures and Spectroscopic Properties

Abderrahmen Salah, Martin Corpet, Najm ul-Hassan Khan, Davit Zargarian,* and Denis Spasyuk†

* Département de chimie, Université de Montréal, Montréal (Québec), Canada H3C 3J7
† Current address: Department of Chemistry, University of Calgary,

2500 University Dr. NW, Calgary, Alberta, Canada, T2N1N4

Table of Contents

1- Table1. ¹ H NMR chemical shifts for all complexes	S2
2- Table2. ¹³ C NMR chemical shifts for aliphatic carbons for all complexes	S2
3- Table3. ¹³ C NMR chemical shifts for aromatic carbons for all complexes	
	G2
4- Table4. ³¹ P{ ¹ H}NMR Chemical shifts for all complexes	83
5- Table5. Crystal Data Collection and Refinement Parameters for Complexes 1-6	S4
	~ -
6- Table 6. Selected Bond Distances (A) and Angles (deg) for Complexes 1-6	
7- Spectra for incompletely characterized complexes	7-S11

Comp.	2xCH ₃	2xCH ₃	2xCH ₃	2xCH ₃	2xCH	2xCH	OCH ₂ Ar	ArH ³	ArH ⁴	ArH ⁵
	(dd)	(dd)	(dd)	(dd)	(m)	(m)	(d)	(d)	(t)	(d)
	$(^{3}J_{\rm HH})$	$({}^{3}J_{\rm HH} {}^{3}J_{\rm HP})$	$({}^{3}J_{\rm HH} {}^{3}J_{\rm HP})$	$({}^{3}J_{\rm HH} {}^{3}J_{\rm HP})$			$(^{3}J_{\rm HP})$	$(^{3}J_{\rm HH})$	$(^{3}J_{\rm HH})$	$(^{3}J_{\rm HH})$
	$^{3}J_{\rm HP}$)								${}^{4}J_{ m HH})$	$^{4}J_{\rm HH}$)
ligand	0.91	1.00	1.10	1.14	1.7	6 (m)	4.72	6.82	6.9	00
_	(7, 2)	(7, 2)	(7, 2)	(7, 2)			(8)	(6)	(n	n)
1	1.09	1.16	1.42	1.46	2.4	2 (m)	4.60	6.43	6.8	38
	(7, 13)	(7, 14)	(7, 2)	(7, 2)			(17)	(6)	(n	n)
2	0.96 (7,	1.21 (7,	1.37 (7, 17)	1.74 (7, 19)	2.02	2.90	4.54 (17)	6.35 (8)	6.74	(m)
	13)	12)			(m)	(m)				
3	0.92 (7,	1.05 (7,	1.36 (7, 18)	1.55 (7, 19)	2.09	2.58	4.44 (17)	6.28 (7)	6.61 (7)	6.70 (7,
	13)	12)			(m)	(m)				1)
4b	1.11 (7,	1.30 (7,	1.38 (7, 6)	1.43 (vt, 7)	1.97	2.30	4.89 (17)	6.79 (7)	6.87 (7)	7.02 (7)
	14)	14)			(m)	(m)				
5	1.2	21 (m)	1.40 (7, 16)	1.48 (7,16)	2.4	3 (m)	4.75 (15)	6.53 (7)	6.97 (7)	7.07 (8)
6	1.11 (7,	1.16 (7,	1.20 (7, 18)	1.25 (7, 19)	2.1	5 (m)	4.76 (16)	6.59 (8)	7.00 (7,	8 (7)
	13)	19)							2)	

Table 1. ¹H NMR chemical shifts for all complexes

Table 2. ¹³C NMR chemical shifts for aliphatic carbons all complexes

	2xCH ₃	2xCH ₃	2xCH ₃	2xCH ₃	1xCH	1xCH	1xCH	1xCH	CH ₂		
Comp.	(s)	(s)	(d)	(d)	(d)	(d)	(d)	(d)	(s)		
			$(^{3}J_{\rm CP})$	$(^{3}J_{\rm CP})$	$(^1J_{\rm CP})$	$(^1J_{\rm CP})$	$(^{1}J_{CP})$	$(^{1}J_{CP})$			
ligand	17.81	17.53	16.92	16.82	28.13 (24) dd		28.31 (24) dd		74.03		
	(20)	(20)	(20)	(20)							
1	17.10	d (15)	18.34	19.15	28	8.06 28.47		76.10			
			(4)	(5)	(24, 3)		24, 3) (20, 3)				
2	16.69	17.30	18.15	19.83	27	.08	08 29.75		76.99		
			(6)	(7)	(21)		(16)				
3	16.29	16.69	17.63	17.69	27.28		28	.47	76.53		
			S	s	S		S		b	r	br
4b	17.54	18.39	19.06	20.68	27.93 (23)		27.93 (23)		30.60	(18, 3)	77.48
			(7)	(8)							
5	14.47	15.49 d	16.6	8 (5)	25.68 (22)		26.67	7 (26)	72.59		
		(5)			~ /						
6	16.87	17.01	17.78	18.83	27.44 dd (12,		27.65 c	ld (12,	75.12		
					3	8)	3)			

	ArC ¹	ArC ²	ArC ³	ArC ⁴	ArC ⁵	ArC ⁶
Comp.	(dd)	(dd)	(d)	(s)	(s)	(dd)
	$(^2J_{\rm CP})$	$(^2J_{\rm CP} \ ^3J_{\rm CP})$	$({}^{3}J_{\rm CP})$			$(^{3}J_{\rm CP})$
ligand	159.70 (9)	120.52 (2)	141.45 (8)	114.66 (6)	129.30	141.45 (8)
1	132.03	170.07	111.63	127.17	120.89	142.15
	(42)	(17, 2)	(13)			(12)
2	142.11	170.24 (15)	111.93 (11)	127.46	121.30	142.63
						(12)
3	136.47 (42)	169.65 (17, 2)	112.00	128.80	121.39	141.51
			(13)			(12)
4b	133.96 (29)	169.39 (17)	112.78 (10)	128.31	122.15	143.49
						(14)
5	136.21 (19)	167.71 (18)	108.15	124.10	117.61	139.74
			(13)			(12)
6	142.40 pst.	169.20 (18, 6)	110.47	125.74	119.56	143.05
	(20.4)		(13)			(10)

Table 3. ¹³C NMR chemical shifts for Aromatic ring for all complexes

Table 4. ³¹P{¹H} NMR chemical shifts for all complexes

Compound	δ for ArO- <i>P</i>	δ for ArCH ₂ O-P
	(multicplicity, ${}^{2}J_{pp}$ in Hz)	(multicplicity, ${}^{2}J_{pp}$ in Hz)
РОСНОР′	154 (s)	147 (s)
1	187 (d, 283)	155 (d, 283)
2	189 (d, 302)	148 (d, 302)
3	189 (d, 285)	148 (d, 285)
4b	194 (d, 260)	152 (d, 260)
5	187 (d, 323)	160 (d, 323)
6	187 (d, 323)	160 (d, 323)

	1	2	4b	5	6
Chem. Formula	C ₁₉ H ₃₃ O ₂ P ₂ Br ₁ Ni	$C_{26}H_{40}O_5P_2S_1Ni$	$C_{57}H_{56}O_2P_2N_1B_1Ni$	C ₂₂ H ₃₆ O ₂ P ₂ Ni	$C_{20}H_{36}O_2P_2Ni$
Cryst. colour	yellow	yellow	yellow	yellow	yellow
Fw	494.01	585.29	833.05	450.15	429.14
T (K)	150	150	150	150	150
λ (Å)	1.54178	1.54178	1.54178	1.54178	1.54178
Space Group	P-1	P21/c	Pbca	P-1	P-1
A (Å)	8.3325(2)	8.4032(3)	19.7665(4)	8.0421(7)	8.3833(2)
B (Å)	10.9016(2)	16.9796(7)	17.7155(4)	16.7084(15)	10.8596(2)
C(Å)	12.7875(3)	21.3710(8)	23.8071(6)	17.4737(16)	12.7379(3)
α (deg)	102.314(1)	90	90	90.814(4)	102.681(1)
β (deg)	94.699(1)	105.376(2)	90	90.648(4)	94.204(1)
γ (deg)	91.958(1)	90	90	97.959(4)	92.443(1)
Z	2	4	4	2	2
V(Å ³)	1129.45(4)	2940.1(2)	8336.6(3)	2324.9(4)	1126.26(4)
ρ_{calcd}	1.453	1.322	1.327	1.295	1.265
μ (cm ⁻¹)	47.20	29.08	17.14	26.03	26.55
θ range (deg)	4.16-67.42	3.37-67.95	3.71-67.92	2.53-68.00	3.57-67.96
R1 a [I>2σ]	0.0320	0.0300	0.0371	0.0506	0.0407
$\frac{wR2^{b}[I >}{2\sigma(I)]}$	0.0853	0.0836	0.0979	0.1318	0.1124
R1[all data]	0.0340	0.0318	0.0380	0.0527	0.0412
WR2[all data]	0.0867	0.0846	0.0985	0.1335	0.1130
GOF	1.048	1.048	1.104	1.048	1.029

Table 5. Crystal Data Collection and Refinement Parameters for Complexes 1-6.

^a $R_1 = \Sigma(||F_o| - |F_c||) / \Sigma|F_o|$

 $^{b}wR_{2} = \{\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{\frac{1}{2}}$

	1	2	4b	5†	6
Ni-C(1)	1.920(2)	1.916(2)	1.919(2)	1.936(3)	1.947(2)
Ni-P(1)	2.1443(7)	2.1684(5)	2.1559(5)	2.1267(8)	2.1177(6)
Ni-P(2)	2.1744(7)	2.1924(5)	2.1921(5)	2.1283(8)	2.1355(5)
Ni-X/L	2.3372(4)	1.937(1)	1.881(1)	1.9100(3)	2.065(2)
P(1)-Ni-P(2)	169.26(3)	169.19(2)	169.30(2)	170.26(4)	168.14(3)
P(1)-Ni-X	91.15(2)	94.39(4)	93.71(5)	92.24(9)	92.19(5)
P(2)-Ni-X	92.24(2)	88.55(4)	92.82(5)	91.28(9)	91.89(5)
P(1)-Ni-C(1)	83.39(6)	83.95(5)	81.56(5)	85.39(10)	83.03(6)
P(2)-Ni-C(1)	93.06(6)	92.92(5)	91.86(5)	93.76(10)	92.78(6)
C(1)-Ni-X	174.53(6)	178.26(6)	175.27(7)	176.57(13)	175.22(8)
Twist angle [‡]	21	16	25	9	22
Tetrahedral distortion*	0.197	0.280	0.000	0.124	0.213

Table 6. Selected Bond Distances (Å) and Angles (deg) for Complexes 1-6.

[†]All the values cited for this complex represent averages of the corresponding values in two independent molecules.

[‡]Twist angle is defined as the angle between the (mean) planes encompassing the benzenic moiety of the 5,6-POCOP' ligand (C(1)-C(6)) and the atoms P(1), C(1), and P(2).

* Distance of Ni from the plane defined by the atoms P(1), C(1), and P(2).

Complex 3 : ¹³C{¹H} NMR (101 MHz, C₆D₆)

Complex 3 : ³¹P{¹H} NMR (162 MHz, C₆D₆)

Complex 5: ¹H NMR (400 MHz, C₆D₆)

Complex 5: ${}^{13}C{}^{1}H$ NMR (101 MHz, C₆D₆)

Complex 5: ${}^{31}P{}^{1}H$ NMR (162 MHz, C₆D₆)

Complex 6: vinylic/aromatic region of ¹H NMR (400 MHz, C₆D₆)

Complex 6: ¹³C{¹H} NMR (101 MHz, C₆D₆)

Complex 6: ³¹P{¹H} NMR (162 MHz, C₆D₆)

