Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Synthetic possibility of polystyrene functionalization based on hydroxyl groups of

graphene oxide as nucleophile

Rongbing Yu, a Shupeng Zhang, a,* Yuting Luo, a Ruofei Bai, b Jiangfang Zhou and Haiou Song^{c,*}

^o School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. E-mail: shupeng 2006@126.com

^b College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, PR China

^c State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China , E-mail:

songhaiou2011@126.com

1. Charaterazation

FT-IR spectra were recorded on a Nicolet IS-10 spectrometer equipped with a Smart OMNI sampler with a high purity Ge crytal. Raman spectra of samples were measured on a LabRAM ARAMIS (HORIBA Jobin Yvon S.A.S.) using an excitation wavelength of 532 nm. XRD analyses were performed on a Bruker D8 Advance diffractometer with Cu-K α radiation. Thermogravimetric analyses (TGA) were preformed on a Mettler TGA/SDTA851e thermogravimetric analyzer

1

at a heating rate of 20 °C/min in a dry nitrogen atmosphere.

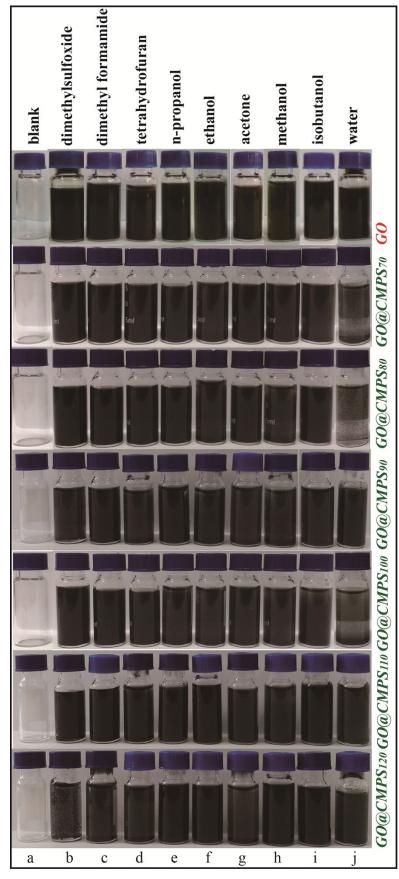


Fig. S1. Digital pictures of GO and GO@CMPS dispersed in water and 7 organic solvents through bath ultrasonication