Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information

Conducting Polymer Nonofibers of Controlled Diameter Synthesized in Hexagonal Mesophases

Srabanti Ghosh^{1≠}, Laurence Ramos², Samy Remita^{1,3}, Alexandre Dazzi¹, Ariane Deniset-Besseau¹, Patricia Beaunier^{4, 5}, Fabrice Goubard⁶, Pierre-Henri Aubert⁶ and Hynd Remita^{1, 7}

¹Laboratoire de Chimie Physique, UMR 8000-CNRS, Université Paris-Sud, 91405 Orsay, France ²Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, F-France

³Département CASER, Ecole SITI, Conservatoire National des Arts et Métiers, CNAM, 75141 Paris Cedex 03, France

⁴Sorbonne Universités, UPMC Univ. Paris 06, UMR 7197-CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France

⁵CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F-75005 Paris, France

⁶Laboratoire de Physicochimie des Polymères et Interfaces (LPPI), Université de Cergy-Pontoise, 95031 Cergy-Pontoise Cedex, France

⁷CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay, France

*Present address: Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India *corresponding author, E-mail: hvnd.remita@u-psud.fr

Salt	SDS	Salted water	Swelling	Oil	Pentanol
(NaCl)	(g)	(mL)	ratios (φ , v/v)	(Cyclohexane)	(mL)
(M)				(mL)	
0.3	0.8	2	2.21	4.42	~0.417
0.1	1	2.5	0.98	2.45	~0.479
0	1.7	4.25	0.72	3.06	~0.737

Table S1Composition of mesophases used for polymerization.

Fig.S1 Photographs of hexagonal mesophases doped with monomer (DPB) and photoiniator (BME) with $\phi = 2.21$ and C_s= 0.3 M NaCl, before and after UV irradiation exposure. The color change indicates the polymerization of DPB in presence of BME by UV irradiation.

Fig.S2 Polarized light micrographs of hexagonal mesophases (a) before and (b) after gamma irradiation induced polymerization in mesophases with $\phi = 2.21$ and $C_s = 0.3$ M NaCl. After polymerization, PDPB polymer shows a large degree of preservation of the birefringent pattern indicative of the stability of hexagonal LC phase.

Fig. S3

Fig.S3 (a) Topographic image of PDPB nanostructures synthesized by gamma irradiation obtained by conventional AFM. AFM-IR mappings of PDPB polymer nanostructures synthesized in a swollen hexagonal phase with $\phi = 2.21$, $C_s = 0.3 \text{ mol.L}^{-1}$ measured at different wavenumbers, **(b)** 1490 cm⁻¹, **(c)** 2146 cm⁻¹ and **(d)** 3054 cm⁻¹.

Fig.S4 AFM-IR spectra recorded at three different region of spectrum of PDPB synthesized by gamma irradiation in mesophases with $\phi = 2.21$ and $C_s = 0.3$ M NaCl.

Fig. S5

Fig. S5 SEM image of PDPB prepared by UV irradiation in bulk cyclohexane.

Fig. S6

Fig.S6 TGA profile of solid PDPB nanostructures after extraction. A mesophase with swelling ratio ϕ =2.21and C_s= 0.3 M NaCl was used for polymerization by UV-irradiation.

Fig. S7 X-ray diffraction pattern of solid PDPB nanofibers.

No.	Sample	Conductivity	References
		(S cm ⁻¹)	
1	UV light induced PDPB nanofibers	3.5×10 ⁻²	This work
2	Radiolytic synthesis of PDPB nanofibers	1.3×10 ⁻¹	This work
3	Bulk polyacetylene	10 ⁻¹¹	Day et al., Macromolecules, 1980, 13, 1478–1483.
4	Nanocrystals of Poly(diacetylene)	1.3×10 ⁻²	Baba et al., Jpn. J. Appl. Phys. 2008, 47 , 376–380.
5	Polydiacetylene thin film (2-20 μm)	$(3-5) \times 10^{-6}$	Takami <i>et al., J. Phys. Chem. B</i> 2004, 108 , 16353–16356
6	Polydiacetylene film	10 ⁻⁴ ~ 10 ⁻⁷	Nakanishi et al., Mol. Cryst. Liq. Cryst., 1984, 105 , 77–88.
7	Polydiacetylene bilayers	10 ⁻⁷	Day et al., J. Appl. Polym. Sci. 1981, 26 , 1605–1612.

Table S2 Comparative values of conductivity of poly(diphenylbutadyine).