Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Structural Variation in Cerium Aryloxide Complexes Templated by Hemilabile K⁺-Amine Interactions

Jee Eon Kim, Patrick J. Carroll, and Eric J. Schelter*

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104

E-mail: schelter@sas.upenn.edu

Supporting Information

Figure S1. ¹ H- and ¹⁹ F-NMR spectra of K[Ce(OTf)(bdmmp) ₃] (1)	S3
Figure S2. ¹ H-, ¹⁹ F-NMR and ¹³ C NMR spectra of K[La(OTf)(bdmmp) ₃] (1–La)	S4–S5
Figure S3. ¹ H-NMR spectra of $K[Ce(OC_6H_5)(bdmmp)_3]$ (2) in benzene- d_6 , methylene chloride- d_6	2 .S6
Figure S4. ¹ H-NMR spectrum of $K[Ce(OC_6H_5)(bdmmp)_3]$ (2) in toluene- d_8	S7
Figure S5. VT NMR spectra of K[Ce(OC ₆ H ₅)(bdmmp) ₃] (2) and chemical shift-temperature plot	
	S8
Figure S6. ¹ H NMR spectrum of Ce(OC ₁₀ H ₇)(bdmmp) ₃ K (3) in benzene- d_6 and methylene chl	oride-d ₂ at
300 K	S9
Figure S7. ¹ H NMR spectrum of $K[Ce(OC_{10}H_7)(bdmmp)_3]$ (3) in toluene- d_8	S10
Figure S8. ¹ H NMR and ¹³ C NMR spectra of K[La(OC ₁₀ H ₇)(bdmmp) ₃] (3–La) in toluene-d ₈	S11
Figure S9. VT NMR spectra of K[Ce(OC ₁₀ H ₇)(bdmmp) ₃] (3) and chemical shift-temperature plot	t
	S12
Figure S10. ¹ H NMR spectrum of $K[Ce(OC_6H_3-2,4-tBu)(bdmmp)_3]$ (4) in benzene- d_6 at 300 K	S13
Figure S11. ¹ H NMR spectrum of K[Ce(OC ₆ H ₃ -2,4- <i>t</i> Bu)(bdmmp) ₃] (4) in methylene chloride-	<i>d</i> ₂ at 300K
	S13
Figure S12. ¹ H- and ¹³ C NMR spectra of K[La(OC_6H_3 -2,4- <i>t</i> Bu)(bdmmp) ₃] (4–La) in toluene- <i>d</i> ₈ .	S14
Figure S13. VT NMR spectrum of $K[Ce(OC_6H_3-2,4-tBu)(bdmmp)_3]$ (4) in toluene- d_8 from 300–	370 K
	S15
Figure S14. ¹ H NMR spectrum of K[Ce(OC ₆ H ₃ -2,4- <i>t</i> Bu)(bdmmp) ₃] (4) in toluene- <i>d</i> ₈ at 370 K	S16
Figure S15. ¹ H NMR spectrum of $K[Ce(OC_6H_3-2,6-Ph)(bdmmp)_3]$ (5) in benzene- d_6 and	methylene
chloride-d ₂ at 300 K	S17
Figure S16. ¹ H- and ¹³ C NMR spectra of K[La(OC ₆ H ₃ -2,6-Ph)(bdmmp) ₃] (5-La) in benzene-d ₆	S18
Figure S17. VT NMR spectrum of $K[Ce(OC_6H_3-2,6-Ph)(bdmmp)_3]$ (5) in toluene- d_8 from 300–3	70 K
	S19
Figure S18. ¹ H NMR spectrum of K[Ce(OC ₆ H ₃ -2,6-Ph)(bdmmp) ₃] (5) in toluene- d_8 at 370 K	S20
Figure S19. Thermal Ellipsoid Plot of K[Ce(OTf)(bdmmp) ₃] (1)	S21
Figure S20. Thermal Ellipsoid Plot of K[Ce(OC ₆ H ₅)(bdmmp) ₃] (2)	S22

Figure S21. Thermal Ellipsoid Plot of K[Ce(OC ₁₀ H ₇)(bdmmp) ₃] (3)	S23
Figure S22. Thermal Ellipsoid Plot of K[Ce(OC ₆ H ₃ -2,4- <i>t</i> Bu)(bdmmp) ₃] (4)	S24
Figure S23. Thermal Ellipsoid Plot of K[Ce(OC ₆ H ₃ -2,6-Ph)(bdmmp) ₃] (5)	
Figure S24. Thermal Ellipsoid Plot of K[Ce(OtBu)(bdmmp) ₃] (6)	S26
Figure S25. Thermal Ellipsoid Plot of K[Ce(OC ₆ H ₃ -2,6- <i>i</i> Pr) ₂ (bdmmp) ₂] (7)	S27
Figure S26. Thermal Ellipsoid Plot of K[Ce(OH)(bdmmp) ₃] (8)	S28
Figure S27. Electrochemical Analysis of K[Ce(OC ₆ H ₅)(bdmmp) ₃] (2)	S29
Figure S28. Electrochemical Analysis of K[Ce(OC ₁₀ H ₇)(bdmmp) ₃] (3)	S30
Figure S29. Electrochemical Analysis of K[Ce(OC ₆ H ₃ -2,4- <i>t</i> Bu)(bdmmp) ₃] (4)	S31
Figure S30. Cyclic voltammograms of K[Ce(OC ₆ H ₃ -2,4-tBu)(bdmmp) ₃] (4) and I	K[La(OC ₆ H ₃ -2,4-
<i>t</i> Bu)(bdmmp) ₃] (4–La)	S32
Figure S31. Electrochemical Analysis of K[Ce(OC ₆ H ₃ -2,6-Ph)(bdmmp) ₃] (3)	S33
Figure S32. Cyclic voltammograms of K[Ce(OC ₆ H ₃ -2,6-Ph)(bdmmp) ₃] (5) and I	K[La(OC ₆ H ₃ -2,6-
Ph)(bdmmp) ₃] (5–La)	S34
Figure S33. ¹ H NMR of K[Ce(O <i>t</i> Bu)(bdmmp) ₃] (6) in benzene- <i>d</i> ₆	S35
Figure S34. ¹ H NMR of K[Ce(OC ₆ H ₃ -2,6- <i>i</i> Pr) ₂ (bdmmp) ₂] (7) in benzene- d_6	S36
Figure S35. Decomposition of K[Ce(OtBu)(bdmmp) ₃] (6) to K[Ce(OH)(bdmmp) ₃] (8) in g	glovebox
	S37
Figure S36. ¹ H NMR of K[Ce(OH)(bdmmp) ₃] (8) in benzene- d_6	S38
Figure S37. Addition of degassed H_2O into $K[Ce(OtBu)(bdmmp)_3]$ (6) in benzene- d_6 in the	e J-young tube
	S39
Figure S38. IR spectrum of K[Ce(OH)(bdmmp) ₃] (8) in KBr plate in Nujol	S40
Figure S39. Cyclic voltammograms of K[Ce(OH)(bdmmp) ₃] (8)	
Table 1. Table S1. Summary of structural determination of compound 1–4	S42
Table 2. Table S1. Summary of structural determination of compound 5–8	

re S1a. ¹H NMR spectra for K[Ce(OTf)(bdmmp)₃] (1) in benzene- d_6 .

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (ppm)

Figure S1b. ¹⁹F NMR spectra for K[Ce(OTf)(bdmmp)₃] (1) in benzene- d_6

Figure S2a. ¹H NMR spectrum of K[La(OTf)(bdmmp)₃] (1–La) in benzene-d₆.

Figure S2b. ¹⁹F NMR spectrum of K[La(OTf)(bdmmp)₃] (1–La) in benzene-*d*₆.

Figure S2c. ¹³C NMR spectrum of K[La(OTf)(bdmmp)₃] (1–La) in toluene-*d*₈.

Figure S3b. ¹H NMR spectra for $Ce(OC_6H_5)(bdmmp)_3K$ (2) in methylene chloride-d₂.

Figure S4. ¹H NMR spectra for $Ce(OC_6H_5)(bdmmp)_3K$ (2) in toluene- d_8 .

Figure S5a. VT NMR of K[Ce(OC₆H₅)(bdmmp)₃] in toluene-*d*₈ from 300–370 K.

Figure S5b. Chemical shift (ppm) versus temperature (K) plot of $K[Ce(OC_6H_5)(bdmmp)_3]$ (2).

Figure S6b. ¹H NMR spectra for Ce(OC₁₀H₇)(bdmmp)₃K (3) in methylene chloride-d₂.

Figure S7. ¹H NMR spectra for Ce(OC₁₀H₇)(bdmmp)₃K (**3**) in toluene- d_8 .

Figure S8b. ¹³C NMR spectrum of $K[La(OC_{10}H_7)(bdmmp)_3]$ (3–La) in benzene- d_6

Figure S9a. VT NMR of $K[Ce(OC_{10}H_7)(bdmmp)_3]$ (3) in toluene- d_8 from 300–370 K.

Figure S9b. Chemical shift (ppm) versus temperature (K) plot of $K[Ce(OC_{10}H_7)(bdmmp)_3]$ (3).

Figure S10. ¹H NMR spectrum of K[Ce(OC₆H₃-2,4-*t*Bu)(bdmmp)₃] (4) in benzene- d_6 at 300 K.

Figure S11. ¹H NMR spectrum of $K[Ce(OC_6H_3-2,4-tBu)(bdmmp)_3]$ (4) in methylene chloride-d₂ at 300 K.

Figure S12b. ¹³C NMR of K[La(OC_6H_3 -2,4-*t*Bu)(bdmmp)₃] (4–La) in benzene-*d*₆.

Figure S13. VT NMR of K[Ce(OC₆H₃-2,4-*t*Bu)(bdmmp)₃] (4) in toluene- d_8 from 300–370 K.

Figure S14. ¹H NMR spectrum of K[Ce(OC₆H₃-2,4-*t*Bu)(bdmmp)₃] (4) in toluene- d_8 at 370 K.

Figure S15a. ¹H NMR of K[Ce(OC₆H₃-2,6-Ph)(bdmmp)₃] (5) in benzene- d_6 at 300 K.

Figure S15b. ¹H NMR of $K[Ce(OC_6H_3-2,6-Ph)(bdmmp)_3]$ (5) in methylene chloride-d₂ at 300 K.

Figure S16b. ¹³C NMR of K[La(OC_6H_3 -2,6-Ph)(bdmmp)_3] (5–La) in benzene- d_6 .

Figure S17. VT NMR of K[Ce(OC₆H₃-2,6-Ph)(bdmmp)₃] (5) in toluene- d_8 from 300–370 K.

Figure S18. ¹H NMR of K[Ce(OC₆H₃-2,6-Ph)(bdmmp)₃] (5) in toluene- d_8 at 370 K.

Figure S19. Thermal Ellipsoid Plot of $K[Ce(OTf)(bdmmp)_3]$ (1) at 30 % probability. Hydrogen atoms are omitted for clarity.

Figure S20. Thermal Ellipsoid Plot of $K[Ce(OC_6H_5)(bdmmp)_3]$ (2) at 30 % probability. Hydrogen atoms are omitted for clarity.

Figure S21. Thermal Ellipsoid Plot of $K[Ce(OC_{10}H_7)(bdmmp)_3]$ (3) at 30 % probability. Hydrogen atoms are omitted for clarity.

Figure S22. Thermal Ellipsoid Plot of $K[Ce(OC_6H_3-2,4-tBu)(bdmmp)_3]$ (4) at 30 % probability. Hydrogen atoms are omitted for clarity.

Figure S23. Thermal Ellipsoid Plot of $K[Ce(OC_6H_3-2,6-Ph)(bdmmp)_3]$ (5) at 30 % probability. Hydrogen atoms are omitted for clarity.

Figure S24. Thermal Ellipsoid Plot of $K[Ce(OtBu)(bdmmp)_3]$ (6) at 30 % probability. Hydrogen atoms are omitted for clarity.

Figure S25. Thermal Ellipsoid Plot of $K[Ce(OC_6H_3-2,6-iPr)_2(bdmmp)_2]$ (7) at 30 % probability. Hydrogen atoms are omitted for clarity.

Figure S26. Thermal Ellipsoid Plot of $K[Ce(OH)(bdmmp)_3]$ (8) at 30 % probability. Hydrogen atoms are omitted for clarity.

Scan rate(V/s)	sqrt. Scan rate	E _{pa} (V)	I _{pa} (A)	E _{pc} (V)	I _{pc} (A)
1	1	-0.26	-2.85E-05	-0.77	1.63E-05
0.5	0.707	-0.29	-2.13E-05	-0.75	1.36E-05
0.25	0.500	-0.32	-1.58E-05	-0.72	1.10E-05
0.1	0.316	-0.35	-1.07E-05	-0.68	8.01E-06
0.05	0.224	-0.37	-8.01E-06	-0.65	6.45E-06

Figure S27a. Electrochemical Analysis of K[Ce(OC₆H₅)(bdmmp)₃] (2)

Figure S27b. Isolated Ce^{III//IV} couple of 2 at scan rate dependence.

Figure S27c. The Randles-Sevcik plot of the isolated cerium(III/IV) couple of 2.

Scan rate(V/s)	sqrt. Scan rate	E _{pa} (V)	I _{pa} (A)	E _{pc} (V)	I _{pc} (A)
1	1	-0.22	-3.16E-05	-0.74	2.03E-05
0.5	0.707	-0.25	-2.30E-05	-0.72	1.63E-05
0.25	0.500	-0.28	-1.70E-05	-0.7	1.29E-05
0.1	0.316	-0.31	-1.14E-05	-0.66	8.66E-06
0.05	0.224	-0.34	-8.55E-06	-0.64	6.78E-06

Figure S28a. Electrochemical Analysis of K[Ce(OC₁₀H₇)(bdmmp)₃] (**3**)

Figure S28c. The Randles-Sevcik plot of the isolated cerium(III/IV) couple of 3.

Scan rate(V/s)	sqrt. Scan rate	E _{pa} (V)	I _{pa} (A)	E _{pc} (V)	I _{pc} (A)
1	1	-0.18	-1.94E-05	-0.78	8.17E-06
0.5	0.707	-0.19	-1.43E-05	-0.76	5.49E-06
0.25	0.500	-0.22	-1.07E-05	-0.73	3.91E-06
0.1	0.316	-0.26	-7.11E-06	-0.69	2.78E-06
0.05	0.224	-0.28	-5.32E-06	-0.65	2.57E-06

Figure S29a. Electrochemical Analysis of K[Ce(OC₆H₃-2,4-*t*Bu)(bdmmp)₃] (4)

Figure S29b. Isolated $Ce^{III//IV}$ couple of 4 at scan rate dependence.

Figure S29c. The Randles-Sevcik plot of the isolated cerium(III/IV) couple of 4.

Figure S30. Cyclic voltammogram of $K[Ce(OC_6H_3-2,4-tBu)(bdmmp)_3]$ (4) and $K[La(OC_6H_3-2,4-tBu)(bdmmp)_3]$ (4–La).

Scan rate(V/s)	sqrt. Scan rate	E _{pa} (V)	I _{pa} (A)	E _{pc} (V)	I _{pc} (A)
1	1	-0.18	-1.94E-05	-0.78	8.17E-06
0.5	0.707	-0.19	-1.43E-05	-0.76	5.49E-06
0.25	0.500	-0.22	-1.07E-05	-0.73	3.91E-06
0.1	0.316	-0.26	-7.11E-06	-0.69	2.78E-06
0.05	0.224	-0.28	-5.32E-06	-0.65	2.57E-06

Figure S31a. Electrochemical Analysis of K[Ce(OC₆H₃-2,6-Ph)(bdmmp)₃] (5)

Figure S31b. Isolated Ce^{III//IV} couple of 5 at scan rate dependence.

igure S31c. The Randles-Sevcik plot of the isolated cerium(III/IV) couple of 5.

Figure S32. Cyclic voltammograms of $K[Ce(OC_6H_3-2,6-Ph)(bdmmp)_3]$ (5) and $K[La(OC_6H_3-2,6-Ph)(bdmmp)_3]$ (5–La).

Figure S33. ¹H NMR of K[Ce(OtBu)(bdmmp)₃] (6) in benzene- d_6 .

Figure S34. ¹H NMR of K[Ce(OC₆H₃-2,6-*i*Pr)₂(bdmmp)₂] (7) in benzene- d_6 .

Figure S35. Decomposition of K[Ce(O*t*Bu)(bdmmp)₃] (**6**) to K[Ce(OH)(bdmmp)₃] (**8**) in glovebox.

Figure S36. ¹H NMR of K[Ce(OH)(bdmmp)₃] (8) in benzene- d_6 .

Figure S37. Addition of degassed H₂O into K[Ce(O*t*Bu)(bdmmp)₃] (**6**) in benzene- d_6 in the J-young tube. Top: K[Ce(O*t*Bu)(bdmmp)₃] (**6**), Middle: K[Ce(O*t*Bu)(bdmmp)₃] (**6**) + H₂O and Bottom: K[Ce(OH)(bdmmp)₃] (**8**)

Figure S38. IR spectrum of K[Ce(OH)(bdmmp)₃] (8) in KBr plate in Nujol.

Figure S39. Cyclic voltammogram of $K[Ce(OH)(bdmmp)_3]$ (8) in methylene chloride. (Top) full scan (bottom) isolated Ce^{III/IV} couple.

	1	2	3	4
Empirical formula	C ₆₁ H ₈₇ SN ₆ O ₆ F ₃ KCe	C45H68N6O4KCe	C ₆₃ H ₈₆ N ₆ O ₄ KCe	C ₅₃ H ₈₄ N ₆ O ₄ KCe
Formula weight	1268.65	936.27	1170.60	1048.48
Temperature	143(1) K	143(1) K	143(1) K	143(1) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	$P2_1/c$	P2 ₁ /n	рĪ	рĪ
Cell constants:				
a	20.835(3) Å	11.7314(12) Å	14.4458(9) Å	11.3184(8) Å
b	14.682(2) Å	16.3110(15) Å	14.7681(9) Å	13.5855(11) Å
с	23.143(3) Å	24.948(2) Å	15.4079(10) Å	23.2211(17) Å
α	_	_	92.430(3)°	85.902(4)°
β	115.188(6)°	97.884(5)°	91.434(3)°	76.841(4)°
γ	_	_	110.149(3)°	77.042(4)°
Volume	6406.3(15) Å ³	4728.7(8) Å ³	3080.4(3) Å ³	3387.5(4) Å ³
Z	4	4	2	2
Density (calculated)	1.315 Mg/m ³	1.315 Mg/m ³	1.262 Mg/m ³	1.028 Mg/m ³
Absorption	0.868 mm ⁻¹	1.096 mm ⁻¹	0.855 mm ⁻¹	0.771 mm ⁻¹
F(000)	2652	1956	1230	1106
	$0.35 \times 0.12 \times 0.10$	$0.36 \times 0.14 \times 0.06$	$0.30 \ge 0.12 \ge 0.08$	$0.08 \times 0.08 \times 0.08$
Crystal size	mm ³	mm ³	mm ³	mm ³
Theta range for data collection	1.76 to 27.61°	1.50 to 27.52°	1.70 to 27.69°	1.54 to 27.66°
	$-27 \le h \le 27$,	$-15 \le h \le 15$,	$-18 \le h \le 18$,	$-14 \le h \le 14$,
Index ranges	$-19 \le k \le 19$,	$0 \le k \le 21$,	$-18 \le k \le 19$,	$-17 \le k \le 17$,
_	$-30 \le 1 \le 30$	$0 \le l \le 32$	$-20 \le l \le 20$	$-30 \le 1 \le 30$
Reflections collected	156725	180529	126487	105132
Independent	14667	10861	14176	15334
reflections	[R(int) = 0.0323]	[R(int) = 0.0488]	[R(int) = 0.0234]	[R(int) = 0.0250]
Completeness to theta = 27.59°	98.6 %	99.8 %	98.4 %	97.0 %
Altramation composition	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
Absorption correction	from equivalents	from equivalents	from equivalents	from equivalents
Max. and min. transmission	0.7456 and 0.5879	0.7456 and 0.6280	0.7456 and 0.6637	0.7456 and 0.6739
Pafinamant mathad	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
Kennement method	squares on F ²	squares on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	14667 / 399 / 725	10861 / 0 / 529	14176 / 0 / 692	15334 / 0 / 608
Goodness-of-fit on F ²	1.098	1.188	1.174	0.777
Final R indices	R1 = 0.0611,	R1 = 0.0279,	R1 = 0.0215,	R1 = 0.0462,
[I>2sigma(I)]	wR2 = 0.1329	wR2 = 0.0732	wR2 = 0.0541	wR2 = 0.1361
	R1 = 0.0798,	R1 = 0.0335,	R1 = 0.0239,	R1 = 0.0524,
R indices (all data)	wR2 = 0.1482	wR2 = 0.0750	wR2 = 0.0559	wR2 = 0.1434
Absolute structure				
parameter	—	_	_	-
Largest diff. peak	1.348	0.833 and -0.863	0.635 and -0.340	1.653 and -1.032
and hole	and -1.386 e.Å-3	e.Å-3	e.Å-3	e.Å ⁻³

 Table S1. Summary of structural determination of compound 1–4

	5	6	7	8
Empirical formula	C ₆₄ H ₈₄ N ₆ O ₄ KCe	C43H72N6O4KCe	C ₅₇ H ₈₄ N ₄ O ₄ KCe	$C_{99}H_{152}N_{12}O_8K_2Ce_2$
Formula weight	1180.59	916.29	1068.50	1996.76
Temperature	143(1) K	143(1) K	143(1) K	100(1) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Triclinic	rhombohedral	Monoclinic	Triclinic
Space group	pĪ	R3	C2/c	рĪ
Cell constants:				
a	12.1981(9) Å	49.697(5) Å Å	26.329(3) Å	10.5168(5) Å
b	13.1778(10) Å	_	14.3707(13) Å	14.2353(7) Å
с	19.5063(13) Å	10.6526(12) Å	33.138(3) Å	19.0676(10) Å
α	97.217(4) °	—	—	94.568(3) °
β	96.618(4)°	_	109.328(5)°	100.046(2)°
γ	98.276(4)°	_	_	110.486(3)°
Volume	3049.8(4) Å ³	22785(4) Å ³	11832(2) Å ³	2602.3(2) Å ³
Z	2	18	8	1
Density (calculated)	1.286 Mg/m ³	1.202 Mg/m ³	1.200 Mg/m ³	1.274 Mg/m ³
Absorption coefficient	0.865 mm ⁻¹	1.022 mm ⁻¹	0.883 mm ⁻¹	1.000 mm ⁻¹
F(000)	1238	8658	4504	1048
	0.15 x 0.10 x 0.04	0.12 x 0.02 x 0.01	0.42 x 0.26 x	0.34 x 0.28 x 0.16
Crystal size	mm ³	mm ³	0.04mm ³	mm ³
Theta range for data collection	1.58 to 27.54°	1.42 to 27.52°	1.64 to 27.56°	1.55 to 27.53°
	$-15 \le h \le 15$,	$-64 \le h \le 63$,	$-34 \le h \le 34$,	$-13 \le h \le 13$,
Index ranges	$-17 \le k \le 17$,	$-59 \le k \le 49$,	$-18 \le k \le 18$,	$-18 \le k \le 18$,
	$-25 \le 1 \le 24$	$-13 \le 1 \le 13$	$-43 \le 1 \le 43$	$-24 \le 1 \le 24$
Reflections collected	71175	55637	103008	76235
Independent	13966	11574	13642	11727
reflections	[R(int) = 0.0276]	[R(int) = 0.1306]	[R(int) = 0.0370]	[R(int) = 0.0226]
Completeness to theta = 27.59°	99.4 %	99.2 %	99.7 %	97.7 %
A1 /* /*	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
Absorption correction	from equivalents	from equivalents	from equivalents	from equivalents
Max. and min.	0.7456 and	0.7456 and 0.6574	0.7456 and 0.6917	0.7456 and 0.6770
transmission	0.6909	0.7450 and 0.0574	0.7450 and 0.0717	0.7450 and 0.0770
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	13966 / 0 / 702	11574 / 0 / 515	13642 / 57 / 608	11727 / 279 / 620
Goodness-of-fit on F ²	1.061	0.800	1.287	1.088
Final R indices	R1 = 0.0345,	R1 = 0.0649,	R1 = 0.0623,	R1 = 0.0262,
[I>2sigma(I)]	wR2 = 0.0781	wR2 = 0.1335	wR2 = 0.1331	wR2 = 0.0633
R indices (all data)	R1 = 0.0429, wP2 = 0.0817	R1 = 0.1606, wP2 = 0.1710	R1 = 0.0774,	R1 = 0.0294, wR2 = 0.0650
Absolute structure	wix2 = 0.0017	wix2 = 0.1/10	wix2 = 0.1300	wix2 = 0.0030
narameter	-	_	-	-
Largest diff neak	3 269 and -1 256	0.652 and -0 678	1.386 and -1 614	1.057 and -0.360
and hole	e Å-3	م ۸-3	م ۸-3	e Å-3
	0.110	U.A -	U.A -	UU

Table S2. Summary of structural determination of compound 5–8