Electronic Supplementary Material (ESI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Three-dimensionally ordered mesoporous carbons
activated by hot ammonia treatment as a
high-performance anode material in lithium-ion
batteries

Bin Han,? Eun Joo Lee,2 Won Ho Choi,® Won Cheol Yoo*? and Jin Ho Bang*®

Department of Bionanotechnology and Department of Chemistry and Applied Chemistry, Hanyang

University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 426-791, Republic of Korea

Email: jpbang@hanyang.ac.kr (J. H. Bang), wcyoo@hanyang.ac.kr (W. C. Y00)

& Department of Bionanotechnology

b Department of Chemistry and Applied Chemistry



SiOi template Carbon precursor

l Heat under NH,

N-3DOmC

Scheme S1 Schematic illustration of the synthesis of 3DOmMCs and N-3DOmCs.



Fig. S2 Additional SEM images of 3DOmMCs with pore size (A) 8 nm, (B) 16 nm, and (C) 32 nm.



Fig. S3 Additional TEM images of 3DOmMCs with pore size (A) 8 nm, (B) 16 nm, and (C) 32 nm.

Fig. S4 Additional TEM images of N-3DOmCs with pore size (A) 16 nm and (B) 32 nm.
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Fig. S5 TEM-EDS mapping analysis of 16nm_N-3DOmC.

900 C

1h
NH: (8) (5 min

30 C N; (g)

N doping ===y Conductivity & Activation

Scheme S2 Schematic illustration of NHs heat treatment of 3DOmCs for the fabrication of

N-3DOmCs.
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Fig. S6 XRD patterns of 3DOmMCs and N-3DOmCs.
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Fig. S7 XPS spectra of (A) 16nm_3DOmCs and (B) 32nm_3DOmCs before and after NHs3 heat

treatment.
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Fig. S8 Charge/discharge curves of (A) 16nm_3DOmC, (B) 16nm_N-3DOmC, (C) 32nm_3DOmC,

and (D) 32nm_N-3DOmC anodes at various C-rates.
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Fig. S9 Initial charge/discharge curves of A) 16nm_3DOmC, (B) 16nm_N-3DOmC, (C)
32nm_3DOmC, and (D) 32nm_N-3DOmC anodes. Note that the 1% cycle was recorded at 0.1 C,

whereas 2"~10" cycles at 0.5 C.
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Fig. S10 Cyclic voltammograms of (A) 16nm_3DOmC and (B) 16nm_N-3DOmC at a scan rate of 0.1
mV/s.
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Fig. S11 Coulombic efficiency of 3DOmMCs and N-3DOmCs.
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Fig. S12 Specific capacities of 3DOmMCs and N-3DOmCs cycled at various C-rates.



Table S1. Voltage measurements of 16nm_3DOmC and 16nm_N-3DOmC at a given current (0.01
mA), which reflect the electrical conductivity of these carbons. Since R=V/I, the larger voltages, the

higher resistances (also higher resistivity).

Trial at 0.01 mA 3DOmC N-3DOmC
1 1.6V 0.38V
2 1.4V 08V
3 1.3V 1.2V
4 1.5V 05V
5 1.5V 04V
6 1.4V 1.2V
Average 145V 0.75V

Calculation of density of 3DOmMC materials:

- Assumption,
1. The density of solid carbon is assumed to be 2 g/cc (usually 1.8-2.1 g/cc).
2. The silica particles are packed as face-centered cubic array (packing density = 74 %).

3. The size of silica sphere is assumed to be uniform.

4. The density of air at 25 °C is 0.00118 g/cc.

5. The pores of 3DOMCs consist of mesopores and micropores, and the information of pore volumes

of both pores is determined by nitrogen-sorption measurements.

Then, the 3DOmMC has 74 % free volume filled with air at ambient condition, because it is the inverse

structure of the closed packed silica templates. = 26 % of carbon for 3DOmMC sample



So the density of 3DOmMC without considering microporosity is
(0.26 x 2 g/cc) + (0.74 x 0.00118 g/cc) = 0.52 g/cc
Then, the microporosity of the 3DOmMC samples now is needed to be considered as follows:

For example, 32nm_N-3DOmC has 0.169 cc/g of microporosity, then, the emptiness inside

32nm_N-3DOmC is 33.8 % (carbon fraction is then 66.2 %).

When considering the microporosity for 32nm_N-3DOmC, the calculated density is

. (0.26 x 0.662 x 2 g/cc) + (0.26 x 0.338 x 0.00118 g/cc) + (0.74 x 0.00118 g/cc) = 0.345 gl/cc
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