Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

> Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting information

Preparation of network-like ZnO/FeWO₄ mesoporous heterojunctions

with tunable band gaps and their enhanced visible light photocatalytic

performance

Yongchao Ma^a, Yunhua Guo^a, Haiyan Jiang^a, Dan Qu^a, Jing Liu^a, Wukui Kang^a, Ying Yi^a, Wei Zhang^a,

Jinsheng Shi^a and Zhongzhi Han^a*

^aQingdao Agricultural University, Qingdao 266109, People's republic of China

*E-mail: hanzhongzhiqn@aliyun.com

Photocatalysts	FeWO ₄	0.5Zn/ FeWO₄	1Zn/ FeWO₄	1.5Zn/ FeWO₄	2Zn/ FeWO₄
$S_{BET} (m^2 g^{-1})$	15.15	14.45	53.32	22.04	24.29
Average pore size (nm)	3.359	3.271	22.25	26.32	34.68

Table S1 Summary of BET surface areas and pore size of the prepared photocatalysts.

Sample	FeWO ₄	0.5Zn/FeWO ₄	1Zn/FeWO ₄	1.5Zn/FeWO ₄	2Zn/FeWO ₄	ZnO
Degradation (%)	11	30	56	87	48	23
rate constant (min⁻¹)	0.0002	0.0008	0.0012	0.0058	0.0015	0.0006
E _g (eV)	2.1	2.25	2.5	2.9	3.1	3.2
FeWO ₄ Size (nm)	_	11	7	5	4	_

Table S2 Textural properties of FeWO₄, ZnO, and Zn/FeWO₄ heterojunctions

Semiconductor	Absolute electronegativity(X)	energy band gap E _g (eV)	Conduction band edge (eV)	Valence band edge (eV)
FeWO ₄	6.31	2.1	0.76	2.86
ZnO	5.7	3.2	-0.40	2.80

Table S3 Absolute electronegativity, estimated band gap (Eg), conduction band edgeand valence band for ZnO and FeWO4

Fig. S1 SEM images of the prepared products: (a) ZnO, (b) FeWO₄, (c) 0.5Zn/FeWO₄, (d) 1Zn/FeWO₄ and (e) 2Zn/FeWO₄.

As shown in Fig. S1a, the ZnO samples consisted of nanosized particles. Besides, the pure FeWO₄ sample is consisted of large numbers of irregular plates with coarse surfaces (Fig. S1b). It can be seen from Fig. S2c, the whole morphology of the 0.5Zn/FeWO₄ product was similar to that of pure FeWO₄. However, with further adding of ZnO, the morphology of Zn/FeWO₄ sample has nanosphere morphology (Fig. S1c-e).

Fig. S2 The cross-sectional compositional line profiles of the 1.5Zn/FeWO4 heterojunction.

Fig. S3 N_2 adsorption-desorption isotherms of the 0.5Zn/FeWO₄, 1Zn/FeWO₄ and 2Zn/FeWO₄ heterojunctions.

Fig. S4 The plot of $(\alpha hv)^{1/2}$ versus (hv) for the as-prepared ZnO.

Fig. S5 The relationship between band gap shift $\Delta Eg(R)$ and the crystal radius R.

Fig. S6 The absorption spectra of the RhB solution in the presence of $1.5Zn/FeWO_4$ photocatalyst under exposure to visible light ($\lambda \ge 420$ nm).

Fig. S7 Pseudo-first-order kinetics of the prepared photocatalysts.

Fig.S8 The comparison of photocatalytic degradation of RhB over $1.5Zn/FeWO_4$ and M- $1.5Zn/FeWO_4$.