Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Loading of chromenones on superparamagnetic iron oxide-modified dextran core-

shell nanoparticles. Openness to bind to β-cyclodextrin and DNA†

Sameena Yousuf,^{1*} Israel VMV Enoch,^{1*} Paulraj Mosae Selvakumar,¹ Dhanaraj

Premnath²

New Journal of Chemistry

30.07.2015

Г

SI 1 Molecular structure of chromenones (a) PC, (b) DC, (c) DHC, (d) BTC, and (e) BIC

	Dextran-coated SPIONs	Amin	oethylamino–dextran–coated SPIONs
3433.64	–O–H str	3415.31	–O–H str
(broad)		(broad)	
-	_	3792.33	–N–H str
2764.46		2358.52	
2426.01	Aliphatic –C–H str	_	Aliphatic –C–H str
2362.37			

SI 2A IR spectral data for dextran-coated and aminoethylamino-dextran-coated SPIONs

1384.64	O–H in plane bending in coupling with –C–H wagging, In plane bending bands	1383.68	O–H in plane bending in coupling with –C–H wagging, In plane bending bands
1117.55			
to	–C–O str	—	–C–O str
1068.37			
1597.73	-C=C str coupled with C-C str	1597.73	-C=C str coupled with C-C str
838.88	-C-H out of plane bending	_	-C-H out of plane bending
600.72			
535.1	Fe–O bonding	550.5	Fe–O bonding
498.50	498.50		
476.33	Due to dextran	_	Due to dextran
434.86		433.90	

SI 2B IR spectra for (a) dextran-coated SPIONs and (b) aminoethylamino-dextran-coated SPIONs

SI 3 X-ray photoelectron spectra for the expanded spectra of aminoethylamino–modified dextrancoated SPIONs corresponding to (a) Fe 2p, (b) N 1s, (c) O 1s, (d) P 2p, and (e) C 1s

CHRs	Types of Bonds	CHRs	CHR–SPIONs
PC	O–H str	_	3357.46
	C=O	1690.3	1688.37
	Aromatic C=C str	1605.45,1530.24	1605.45
	C–O str coupled with C–H wagging	1383.68,1321.96,	1373.07,1302.68
		1303.64,1148.4	1148.4
	Aliphatic C–H str	3039.26,2896.56	3039.26,2896.56
	Aliphatic C–H bend	1461.78	1460.81
	–C–OH str	_	1079.94,921.80

SI 4 FTIR spectral data of free chromenones, and CHR–SPIONs

	Chelate compounds O–H str	_	2360.44,2340.19
	Deformation vibrations-C-H outside plane,		
	related to substitution of aromatic rings of		
	multi-ring compounds, N-H def out of	800–500	800–500
	plane		
	Fe–O bond stretching	_	~548.6
	N–H str	_	3790.4
DC	O–H str	3496.94	3302.5(broad)
	C=O	1631.78	1630.52
	Aromatic C=C str	1587.42,1498.69	1587.13,1512.88
	C–O str and O–H in plane coupled with C–	1400.32,1309.67,	1401.03,1365.35,
	H wagging	1290.38,1180.44	1277.61,1186.97
	Aliphatic C–H str	3041.74,2964.59	2973.7
	Aliphatic C–H bend	1498.69	1465.63
	Chelate compounds O–H str	2357.01,2328.08	2360.44,2340.19
	–C–OH str	1082,	1435.74,1074.16,
		1020,873,819	1010.16,971.97
	Deformation vibrations-C-H outside plane,		
	related to substitution of aromatic rings of	800–500	800–500
	multi-ring compounds, N-H def out of		
	plane	_	~557.3
	Fe–O bond stretching	_	3789.44
	N–H str		

DHC	O–H str	3285.76 (broad)	3263.93 (broad)
	C=O	1641.54	1640.16
	Aromatic C=C str	1497.30, a band	1517.7
		merged with	
	C–O str and O–H in plane coupled with C–	C=O	1349.93,1312.32,
	H wagging	1390.41,1311.86,	1250.61
	Aliphatic C–H str	1253.2,1180.28	2916.81
	Aliphatic C–H bend	3115.29, 2919.55	1467.56
	Chelate compounds O–H str	1464.16	2360.44
	–C–OH str	2703.98,2622.35	1084.76
		1081.33,1013.21,	
	Deformation vibrations-C-H outside plane,	968.06	
	related to substitution of aromatic rings of	800–500	800–500
	multi-ring compounds, N-H def out of		
	plane	_	~559.2
	Fe–O bond stretching	_	Merged with
	N–H str		О–Н
BTC	C=O	1710.55	1712.48
	Aromatic C=C str	1589.06,1511.92	1589.06,1509.03
	C–O str coupled with C–H wagging	1383.68,1348,	1383.68,1348
	Aliphatic C–H str	1312.32,1259.29,	
	Aliphatic C–H bend	2924.52	3039.26, 2935
	Chelate compounds O–H str	1466.6	1414.53
	–C–N str	2360.44,2340.19	2357,2335
	–C–OH str	1132.01	1130.87
		1076.08,1013.41	1076.08,939.163,
	Deformation vibrations-C-H outside plane,	938.19,818.63	818.63
	related to substitution of aromatic rings of	800–500	800–500
	multi-ring compounds, N-H def out of		
	plane		
	Fe–O bond stretching		
	N–H str	_	~548.6
		_	3454.85 (broad),
			Merged with O–H
BIC	C=0	1709.59	Merged with O–H 1725.98

Aromatic C=C str	1592.91, 1530.24	1591.95,1530.24
C–O str coupled with C–H wagging	1383.68,1354.75	1383.68,1311.36
	1252.54	1253.5
Aliphatic C–H str	2970.8,2907.16	3045.05,2930.31
Aliphatic C–H bend	1467.56	1468.53
Chelate compounds O–H str	2359.48,2339.23	2360.44,2340.19
–C–N str	1137.12	1134.96
–C–OH str	818.63	1012.45, 973.87,
		915.05,819.59
	800–500	800–500
Deformation vibrations-C-H outside plane,		
related to substitution of aromatic rings of		
multi-ring compounds, N-H def out of		
plane		
Fe–O bond stretching	_	~547.6
N–H str	3343	3338.18, 3789.4

SI 5 FTIR spectra of Chromenones and Chromenones conjugated onto SPIONs of (a-b) PC, (c-d) DC, (e-f) DHC, (g-h) BTC, and (i-j) BIC

SI 6 Molecular docking poses of complex of oligomeric part of dextran (Blue) and CHR (Dark brown) (a) PC, (b) DC, (c) DHC, (d) BTC, and (e) BIC (Hydrogen binding- – and Atom-atom interaction – – –)

SI 7 Molecular docking poses of complex of oligomeric part of aminoethylamino-dextran (Blue) and CHR (Dark brown) (a) DC, (b) DHC, (c) BTC, and (d) BIC (Hydrogen binding––and Atom–atom interaction–––)

CHRs	Dextran (Kcal mol ⁻¹)		Aminoethylamino attached	
			dextran(F	Kcal mol ⁻¹)
	Docking	E _{model} score	Docking	E _{model} score
	score		score	
РС	0.640	-24.021	_	_
DC	-1.357	-32.471	-2.55291	-31.8915
DHC	-0.710	-28.494	-1.09581	-32.3933
BTC	-0.500	-40.389	-0.46448	-38.0988
BIC	-0.886	-29.441	-0.65794	-41.3116

ST8	Docking an	nd Emodel score	ofoligome	ric part of	dextran and	aminoethy	lamino-d	extran
510	DOCKING at	nu Emodel Score	of ongoine	ne part or	uczuan anu	ammocury	iammo-u	слиан

SI 9 Energy dispersive X-ray spectra of (a) naked Iron oxide, (b) dextran-coated SPIONs, (c) aminoethylamino-dextran-coated SPIONs,¹ and of CHR–SPIONs of (d) PC, (e) DC, (f) DHC, (g) BTC, (h) BIC

SI 10 Photographic images for the dispersion of free-SPIONs, chemically modified SPIONs, chromenones and the corresponding chromenones conjugated onto chemically modified SPIONs of PC, DC, DHC, BTC, BIC in aqueous medium

SI 11 Size distributions of (a) aminoethylamino–dextran–coated SPIONs, and CHR–SPIONs of (b) PC, (c) DC, (d) DHC, (e) BTC, and (f) BIC

SI 12 Particle size and magnetic properties of aminoethylamino–modified dextran–coated SPIONs and CHR–SPIONs

Sample		Particle	Coercivity, H _c (G)	M _S (emu/g)	M _R (emu/g)
		diameter			
		nm			
Aminoethylamino-modified		723.7	0.65	0	0
dextran-coated SPIONs					
	PC	52.2	3.34	4.94	0
CHR– SPIONs	DC	338.0	0.72	0	0
	DHC	251.5	0.74	1.75	0
	BTC	508.6	0.61	62.31	0
	BIC	564.4	2.04	4.44	0

SI 13 X-ray diffraction patterns of (a) SPIONs, (b) Dextran and chromenones and their aminoethylamino-dextran-coated SPIONs conjugates (IO-DX) of (c) PC, (d) DC, (e) DHC, (f) BTC, and (g) BIC

	20	(deg)	
Compounds	Free CHRs	CHR–SPIONs	
РС	9.4244,	9.3179	
	16.4884	10.7185	
	18.1424	25.7757	
		31.9277	
DC	14.2889	24.0800	
	16.7263	27.4000	
	26.0235	31.1000	
DHC	15.4788	11.0046	
	20.1134	12.0238	
	23.4927	17.9630	
		26.8000	
BTC	10.2000	13.1084	
	13.4032	13.8601	
	15.9126	20.8082	
BIC	7.3910	14.0425	
	14.4279	23.5801	
	24.0022	24.8892	
		26.0000	
Free SPIONs	17.5000, 25.7000, 30.4480, 35.9403,		
Aminoethylamino-			
modified dextran-	15.8733, 23.7824,25.7000, 26.8550		
coated SPIONs			
Dextran	12.6377, 21.1328, 27.2091		

SI14 Major peaks of CHRs, Dextran, SPIONs, and CHR–SPIONs

SI15 Crystallite size and Strain parameter of CHRs, SPIONs, and CHRs–SPIONs

Molecule	XRD Crystallite size in nm		
	with S	train (ε)	
	Free CHR	CHR-SPIONs	
SPIONs	18 (0.0091)		
dextran-coated SPIONs	10 (0.0037)		
Aminoethylamino-dextran-coated SPIONs	45 (0.00037)		
PC	20 (0.00056)	40 (0.0004)	
DC	25 (0.00041)	36 (0.00094)	
DHC	23 (0.00048)	37 (0.0005)	
BTC	43 (0.00045)	34 (0.00014)	
BIC	40 (0.00050)	38 (0.00063)	

SI16 (a) Fluorescence spectra of PC loaded on CHR–SPIONs at varying concentrations of β –CD. Inset: The plot of [β –CD] *vs.* I₀/I, (b) The plot of 1/[β –CD] *vs.* F₀/ Δ F for the fluorescence spectra of PC loaded on CHR–SPIONs at varying concentrations of β –CD, (b) Fluorescence spectra of DC loaded on CHR–SPIONs at varying concentrations of β –CD. Inset: The plot of 1/[β –CD] *vs.* 1/(I–I₀), (c) Fluorescence spectra of DHC loaded on CHR–SPIONs at varying concentrations of β –CD. Inset: The plot of 1/[β –CD]² *vs.* 1/(I–I₀), (d) Fluorescence spectra of BTC loaded on CHR–SPIONs at varying concentrations of β –CD. Inset: The plot of 1/[β –CD]² *vs.* 1/(I–I₀), (d) Fluorescence spectra of BTC loaded on CHR–SPIONs at varying concentrations of β –CD. Inset: The plot of 1/[β –CD] *vs.* 1/(I–I₀), and (e) Fluorescence spectra of BIC loaded on CHR–SPIONs at varying concentrations of β –CD. Inset: The plot of 1/[β –CD] *vs.* 1/(I–I₀), and (e) Fluorescence spectra of BIC loaded on CHR–SPIONs at varying concentrations of β –CD. Inset: The plot of 1/[β –CD] *vs.* 1/(I–I₀).

SI 17 Absorption and fluorescence spectral data of CHR–SPIONs on ctDNA binding

CHRs	CHR–SPIONs				
	Absorption Max	imum (nm)	Fluorescence N	Maximum (nm)	
	Water	DNA	Water	DNA	
PC	255, 321	256, 321	280, 413	281, 414	
DC	286, 381	282, 380	318	314	
DHC	287	281	363	363	
BTC	267, 468, 511	259, 456	511	509	
BIC	264, 469	264, 471	510	511	

SI18 Binding constant values of CHR–SPIONs on DNA binding

CHR loaded on modified SPIONs	K (M ⁻¹)
PC	7.33×10^5
DC	8.20×10^{5}
DHC	2.09×10^{4}
BTC	8.20 × 10 ⁴
BIC	1.06×10^{5}

SI 19 Fluorescence spectra of CHR loaded on CHR–SPIONs at varying concentrations of DNA (a) PC, (b) DC, (c) DHC, (d) BTC, and (e) BIC. Inset: The plot of [DNA] versus I_0/I

SI 20. Experimental

Molecular docking

The molecular structure of the model oligomers of dextran and aminoethylamino modified dextran² was uploaded into Schrodinger Maestro software V 9.6 environment.^{3,4} To get a proper binding affinity and molecular interaction, the receptor had to be prepared in the way of minimizing energy and potentially the molecule were fixed. The molecular receptor was prepared using the preparation work flow. All the hydrogens were added to the receptor to minimize the receptor structure with OPLS 2005 force field and the molecular mechanics engine setting was having a maximum root mean square deviation (RMSD) of 0.30 Å.^{5,6} The energy minimization was performed constraining the heavy molecular atoms with the hydrogen torsion parameters turned off, to permit free rotation of the hydrogen atom. Bio-pharmacological properties of the ligands (CHR-SPIONs) were analyzed through Lipinski rule of five.⁷ The compounds having less property value of Lipinski rule were restudied to obey the rule. The compounds with biologically active functional group were eliminated by applying reactive filter parameters.⁸ After ensuring that the receptor and the ligand were in accurate forms of docking, the receptor grid files were generated and centered the allosteric site residues. To reduce the potential for non-polar parts of the receptor, Van der Wall's radii of the receptor atoms were scaled to 1.00 Å with a partial atomic charge of 0.27. A grid box of six maintained at 40 Å \times 60 Å \times 40 Å, was engaged on the primed receptor structure by selecting allosteric site receptor structure of dextran and aminoethylamino functionalized dextran groups. A three phased subsequent molecular docking was performed to know the molecular interaction. Glide high throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) methods were followed.^{9,10} The XP docking method is highly accurate and offer more poses for all each ligands during docking method and reports the best pose based on the energy term, E_{model}. The best pose of each ligand was further ranked based on the energy term E_{model}. The lowest XP glide score for a ligand indicates the best binding affinity towards the receptor. The cut off XP Glide score was set up as 0 Kcal mol⁻¹.

References:

- 1 Y. Sameena, I. V.M.V. Enoch, P. M. Selvakumar, D. Premnath, *Colloids Surf. B*, 2015, doi:10.1016/j.colsurfb.2015.07.049.
- 2 G. Du, Z. Liu, X. Xia, L. Jia, Q. Chu, S. Zhang, Nanoscience 2006, 11, 49–54.
- 3 R. A. O'Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgmen, P. C. Sanschargin, D. T. Mainz, J. Med. Chem. 2006, 49, 6177–6196.
- 4 Maestro V_{9.6}, Versuib 70110, Schrodinger, New York.
- 5 A. Umamaheswari, D. Pradhan, M. Hemanthkumar, Genom. Proteom. Bioinfo. 2010, 8, 246-255.
- 6 W. H. Brooks, K. G. Daniel, S. S. Sung, W. C. Guida, J. Chem. Inf. Model. 2008, 48, 639-645.

- 7 C. Lipinski, A. Hopkins, Nature 2004, 432, 855-861.
- 8 M. Congreve, R. Carr, C. Murray, H. Jhosi, Drug Today 2003, 8, 876-877.
- 9 R. A. Friensner, J. L. Banks, R. B. Murphy, J. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, P. S. Shenkin, *J. Med. Chem.* 2004, 47, 1739–1749.
- 10 T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, J. L. Banks, J. Med. Chem. 2004, 47, 1750–1759.