Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Quantitive and Highly Selective Sensing of Sodium Houttuyfonate via Long-aliphatic chains Hydrophobic Assemble and Aggregation-Induced Emission

Feifei Yu¹, Yunxu Yang^{1,*}, Aizhi Wang¹, Biwei Hu¹, Xiaofei Luo³, Ruilong Sheng^{2,*}, Yajun Dong¹,

Weiping Fan¹

1. Department of Chemistry and Chemical Engineering, University of Science and Technology

Beijing, Beijing 100083, China.

2. Key laboratory of Synthesis and Self-assembly of Organic Functional Materials, CAS.

Shanghai Institute of Organic Chemistry, Shanghai 200032, China.

3. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China

Corresponding Authors: *Yunxu Yang, E-mail:<u>yxyang@ustb.edu.cn</u> Fax: (+86)-10-6233-3871 *Ruilong Sheng, E-mail: <u>rayleigh121@aliyun.com</u>

Contents

S1. The structure of the 1-5 and CDB-DM	quaternary ammonium salts of cyano-distyrylbenze	ene derivatives CDB
S2. The synthetic route	s and the synthetic details of the quaternary ammo	nium salts of cyano-
distyrylbenzene de	rivatives CDB1-5	4
S3. The characterization	of products	7
S4.The AIE behavior o	f CDB-DMA12 itself and the UV absorption spec	tra of CDB-DMA12
$(35.0\mu M)$ with the a	ddition of different amount of SH	
S5. The dynamic light s	cattering results	
S6. ¹ H NMR titration of	CDB-DMA12 with the addition of SH and SDS.	31

S1. The structure of the quaternary ammonium salts of cyano-distyrylbenzene derivatives CDB 1-5 and CDB-DMA12

S2. The synthetic routes and the synthetic details of the quaternary ammonium salts of cyano-distyrylbenzene derivatives CDB1-5.

Compound **3**, **4**, **5** were synthesize according to the reported procedure (Y. S. Zheng, Y. J. Hu, D. M. Li, Y. C. Chen, Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups. *Talanta*, 2010, **80**(3), 1470-1474.).

The synthetic details of the quaternary ammonium salts of cyano-distyrylbenzene derivatives **CDB1-5** were described below:

S2-1 Synthesis of CDB-1

To a three-necked flask, compound **5** (2 g, 6.75 mmol), trimethylamine in alcohol (1.6 mL, 6.75 mmol) and acetonitrile (30mL) were added under stirred. KI was added as catalytic. Then, the mixture was refluxed for about 3h until one of the reactants disappeared (monitored by TLC; ethyl acetate : methanol = 4:1). The reaction mixture was cooled to iced temperature and a resultant yellow precipitate was collected by filtering. The residue was washed with acetone to give a yellow powder (2.16 g, 83%). IR (KBr, cm⁻¹) v: 3305, 3279, 3184, 3106, 3050, 2954, 2223, 1690, 1601, 1536, 840, 820, 756, 712; ¹H NMR (400MHz, D₂O): δ 8.37 (s, 1H, -NH), 7.94~7.92 (d, *J* = 8.4 Hz, 2H), 7.71~7.67 (t, *J* = 7.6Hz, 4H), 7.40~7.50 (m, 4H), 4.36 (s, 2H), 3.41 (s, 9H); MS (MALDI-TOF): calcd. for C₂₀H₂₂N₃O⁺ (m/z): 320.18; found: 320.09.

S2-2 Synthesis of CDB-2

To a three-necked flask, compound **5** (2 g, 6.75 mmol) and acetonitrile (30mL), triethylamine (1.0 mL, 6.75 mmol) were added under stirred. KI was added as catalytic. Then, the mixture was refluxed for about 4h until one of the reactants disappeared (monitored by TLC; eluent : ethyl acetate). The reaction mixture was cooled to iced temperature and a resultant yellow precipitate was collected by filtering. The residue was washed with diethyl ether to give a yellow powder (1.74 g, 70%). IR (KBr, cm⁻¹) v: 3305, 3279, 3184, 3106, 3050, 2954, 2223, 1690, 1601, 1536, 840, 820, 756, 712; ¹H NMR (400MHz, CD₃OH): δ 8.37 (s, 1H, -NH), 7.94~7.92 (d, *J*=8.4Hz, 2H), 7.71~7.67 (t, *J*=7.6Hz, 4H), 7.40~7.50 (m, 4H), 4.23 (s, 2H), 3.69~3.67 (q, 6H), 1.41~1.37 (t, *J*=7.2Hz, 9H); MS (MALDI-TOF): calcd. for C₂₃H₂₈N₃O⁺ (m/z): 362.22; found: 362.19.

S2-3 Synthesis of CDB-3

To a three-necked flask, compound **5** (2 g, 6.75 mmol) and acetone (30mL), pyridine (1.3 mL, 6.75 mmol) were added under stirred. KI was added as catalytic. Then, the mixture was refluxed for about 6h until one of the reactants disappeared (monitored by TLC; eluant : ethyl acetate). The reaction mixture was cooled to iced temperature and a resultant yellow precipitate was collected

by filtering. The residue was washed with diethyl ether to give a yellow powder (1.91 g, 75.3%). IR (KBr, cm⁻¹) v: 3305, 3279, 3184, 3106, 3050, 2954, 2223, 1690, 1601, 1536, 840, 820, 756, 712° ¹H NMR (400MHz, CD₃OH): δ 9.00~8.98 (d, *J*=4, 2H), 8.73~8.69 (t, *J*=8, 1H), 8.21~8.18 (t, *J*=8, 2H), 7.94~7.92 (d, *J*=8.4Hz, 2H), 7.71~7.67 (t, *J*=7.6Hz, 4H), 7.40~7.50 (m, 4H), 5.68 (s, 2H); MS (MALDI-TOF): calcd. for C₂₂H₁₈N₃O⁺ (m/z): 340.14; found: 340.09.

S2-4 Synthesis of CDB-4

To a three-necked flask, compound **5** (2 g, 6.75 mmol) and acetonitrile (30mL), N, N-dimethyldodecylamine (1.8 mL, 6.75 mmol) were added under stirred. KI was added as catalytic. Then, the mixture was refluxed for about 6h until one of the reactants disappeared (monitored by TLC; eluant : ethyl acetate). The reaction mixture was cooled to iced temperature and a resultant yellow precipitate was collected by filtering. The residue was washed with diethyl ether to give a yellow powder (2.73 g, 79.2%). IR (KBr, cm⁻¹) v: 3305, 3279, 3184, 3106, 3050, 2954, 2223, 1690, 1601, 1536, 840, 820, 756, 712; ¹H-NMR (400MHz, CD₃OH): δ 7.94~7.92 (d, *J*=8.4Hz, 2H), 7.71~7.67 (t, *J*=7.6Hz, 4H), 7.40~7.50 (m, 4H), 4.62 (s, 2H), 4.29 (s, 2H) , 3.64~3.60 (m, 2H), 3.36 (s, 6H), 1.84 (s, 2H), 1.39 (s, 4H), 1.25~1.02 (t, *J*=7.2, 14H), 0.88~0.85 (t, *J*=7.2, 3H); MS (MALDI-TOF): calcd. for C₃₁H₄₄N₃O⁺ (m/z): 474.35; found:474.30.

S2-5 Synthesis of CDB-5

To a three-necked flask, compound **2** (2.7 g, 6.75 mmol) and acetonitrile (30mL), trimethylamine in alcohol (1.6 mL, 6.75 mmol) were added under stirred. KI was added as catalytic. Then, the mixture was refluxed for about 6h until one of the reactants disappeared (monitored by TLC; eluant : ethyl acetate : methanol = 4:1). The reaction mixture was cooled to iced temperature and a resultant yellow precipitate was collected by filtering. The residue was washed with diethyl ether to give a yellow powder (2.59 g, 83.4%). IR (KBr, cm⁻¹) v 3103, 3069, 2210, 1577, 1509, 1460, 1421, 1372, 1337, 1309 ; ¹H NMR (400 MHz , CDCl₃) δ 8.28 (d, *J* = 8.8 Hz, 2H), 7.94 (d, *J* = 8.8 Hz, 2H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.63 (s, 1H), 6.99 (d, *J* = 8.8 Hz, 2H), 4.09 (t, *J* = 6.0 Hz, 2H), 3.50 (t, *J* = 6.4 Hz, 2H), 2.11 (m, 2H), 2.00 (m, 2H); MS (MALDI-TOF): calcd. for C₂₂H₂₆N₃O₃⁺ (m/z): 380.20; found: 380.19.

S3. The characterization of products

S3-1a The ¹H NMR spectrum of intermediate 1

S3-1b The ¹³C NMR spectrum of intermediate **1**

S3-1c The mass spectrum of intermediate 1

S3-2a The ¹H NMR spectrum of intermediate 2

S3-2b The ¹³C NMR spectrum of intermediate 2

S3-2c The mass spectrum of intermediate 2

S3-3a The ¹H NMR spectrum of CDB-DMA12

S3-3b The ¹³C NMR spectrum of CDB-DMA12

S3-3c The mass spectrum of CDB-DMA12

S3-4a The ¹H NMR spectrum of **Model 1**

S3-4b The mass spectrum of **Model 1**

S3-5a The ¹H NMR spectrum of **Model 2**

S3-5b The mass spectrum of **Model 2**

S3-6a The ¹H NMR spectrum of **CDB-1**

S3-6b The mass spectrum of CDB-1

S3-7a The ¹H NMR spectrum of CDB-2

S3-7b The mass spectrum of CDB-2

S3-8 ¹H NMR spectrum of CDB-3

S3-9a The ¹H NMR spectrum of **CDB-4**

S3-9b The mass spectrum of CDB-4

S3-10 The ¹H NMR spectrum of **CDB-5**

S4. The AIE behavior of CDB-DMA12 itself and UV absorption spectra of CDB-DMA12 (35.0μ M) with the addition of different amount of SH

The AIE behavior of **CDB-DMA12** was investigated in mixture CHCl₃/petroleum with petroleum from 0 to 90%. As expected, **CDB-DMA12** is virtually nonluminescent when molecularly dissolved in CHCl₃ (but showed strong fluorescence of its solid), which was indicated by the photographs and fluorescence spectrum. However, when a large amount of petroleum was added into the solution, the emission of **CDB-DMA12** turned on and showed red fluorescence. The fluorescence intensity of **CDB-DMA12** exhibited higher enhancement when petroleum content reached to 90%. Clearly, the emission of **CDB-DMA12** is induced by aggregate formation.

S4-a. PL spectra of CDB-DMA12 (3.5×10⁻⁵ M) in mixture CHCl₃/Petroleum with Petroleum from 0 to 90%.

S4-b. Fluorescence intensity of **CDB-DMA12** (3.5×10^{-5} M) in λ_{em} =520nm vs. composition of CHCl₃/Petroleum mixtures; λ_{ex} =400nm.

S4-c. UV absorption spectra of **CDB-DMA12** (35.0 μM) in H₂O/DMSO (993:7,v/v) with the addition of different amount of **SH** (0.0, 7.0, 14.0, 21.0, 28.0, 35.0, 42.0, 49.0, 56.0, 63.0, 70.0, 77.0 μM).

S5. The dynamic light scattering results

S5. The dynamic light scattering results for the solution of (a) **CDB-DMA12** itself (35.0 μ M) and in the presence of **SH** (35.0 μ M) (b) in water and DMSO (993:7, v/v)

30

S6a. ¹H NMR titration of CDB-DMA12 with the addition of SH

S6a. ¹H NMR titration of CDB-DMA12 with the addition of SH.

It could be seen from the ¹H NMR titration of **CDB-DMA12** with the addition of **SH** that the protons on the **CDB-DMA12** are upfield-shifted, which indicate the formation of **CDB-DMA12/SH** complexes via electrostatic forces of the opposite charges, the hydrogen bindings and hydrophobic interactions.

S6b. ¹H NMR titration of CDB-DMA12 with the addition of SDS

S6b. ¹H NMR titration of **CDB-DMA12** with the addition of **SDS**.

It could be seen from the ¹H NMR titration of **CDB-DMA12** with the addition of **SDS** that the protons shifts on the **CDB-DMA12** are almost no change, which indicate there are no form of **CDB-DMA12/SDS** complexes via electrostatic forces of the opposite charges, the hydrogen bindings and hydrophobic interactions.