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Synthesis Mechanism for PANI-Nano-ZSM-5 

PANI-Nano-ZSM-5 hybrid material was synthesized by the oxidative polymerization of aniline 

with ammonium peroxydisulfate (APS) in an aqueous zeolite suspension by the in-situ surface 

polymerization method. Nano-ZSM-5 was first surface functionalized with propyl amine group 

to favor the growth of PANI film on the surface of Nano-ZSM-5 and not in the bulk solution. 

P123 is a neutral polymeric surfactant and is used to prepare a variety of mesostructured 

materials.1, 2 P123 is amphiphilic and non ionic surfactant and it can form polymer coils in 

aqueous solution under a dilute concentration.3 P123 macromolecules could be attached on the 

peripheral amine groups of Nano-ZSM-5 nanoparticles through hydrogen bonding. Sodium 

dodecyl sulfate (SDS) was subsequently added to the solution, which could form a double 

surfactant layer with negative polar head group of SDS molecule. Aniline monomers could form 

cationic anilinium ions (An+) under acidic condition. An+ could adsorb on the surface of Nano-

ZSM-5 with electrostatic interaction with double surfactant layer. Upon the addition of APS, 

PANI nucleation could takes place that are stabilized by the P123/SDS double surfactant layer 

attached on Nano-ZSM-5 surface.4 The polymerization usually takes place preferentially and 

continuously in proximity to existing PANI. Hence, the polymerization was initiated, 

propagated, and terminated on the surface of Nano-ZSM-5, rather than in bulk solution. 

Therefore, PANI film was formed on the surface of Nano-ZSM-5. 
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Fig. S1. (a) XRD pattern (plane shown here represent the incorporation of PANI in the 

nanocomposite, remaining XRD diffraction corresponds to Nano-ZSM-5) and (b) N2-adsorption 

isotherm of PANI-Nano-ZSM-5 nanocomposite material (inset shows pore size distribution).  

 

The XRD pattern of PANI-Nano-ZSM-5 exhibited the diffraction peaks corresponding to both, 

PANI and Nano-ZSM-5, phases. The N2-adsoption isotherm for PANI-Nano-ZSM-5 exhibited 

type-IV isotherm similar to that of mesoporous materials. The mesopores for PANI-Nano-ZSM-

5 showed a narrow pore size distribution (5-8 nm). The total surface area, external surface area 

and total pore volume for PANI-Nano-ZSM-5 was found to be 297 m2/g, 123 m2/g, and 0.41 

cm3/g, respectively. 
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Fig. S2. SEM image of PANI-Nano-ZSM-5 nanocomposite.  

 

The SEM image confirmed that PANI film was formed on the surface of spherical Nano-ZSM-5 

particles. SEM image also confirmed that no separate phase for bulk PANI was observed.  
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Fig. S3. TGA thermograms of Nano-ZSM-5-Pr-NH2, and PANI-Nano-ZSM-5 materials at a 

heating rate of 10 K/min recorded in air stream.  

 

The first weight loss below 473 K in the TGA curves for the samples indicates the loss of 

physically adsorbed water molecules. In the TGA curve for Nano-ZSM-5-Pr-NH2, the second 

weight loss between 525-875 K can be attributed to the decomposition of organic propylamine 

moiety anchored on the surface of Nano-ZSM-5 and the residual weight refers to the content of 

Nano-ZSM-5 in Nano-ZSM-5-Pr-NH2. TGA analysis confirmed that Nano-ZSM-5-Pr-NH2 

contains 11 wt % functionalized organic group (-Pr-NH2). In the TGA curve for PANI-Nano-

ZSM-5, the combustion of PANI in air stream was completed at 913 K and the residual weight 

refers to the content of Nano-ZSM-5 in the nanocomposite. TGA confirms that PANI-Nano-

ZSM-5 nanocomposite contains 40.7 wt % Nano-ZSM-5 and 43.8 wt % PANI. Nano-ZSM-

5/PANI weight ratio was found to be 0.93, which was very close to their initial weight ratio. 
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Fig. S4. SWVs at different modified electrodes (PANI-Nano-ZSM-5/GCE, AChE/PANI/GCE, 

and AChE/PANI-Nano-ZSM-5/GCE) in 0.002 M PBS containing 0.1 M NaCl (pH 7.4) in the 

presence of 1 mM ACh. 
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Fig. S5. Influence of enzyme loading on AChE/PANI-Nano-ZSM-5/GCE biosensor response in 

the presence of 1 mM ACh. 
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Fig. S6. Lineweaver-Burk plot for amperometric response of AChE/PANI-Nano-ZSM-5/GCE 

biosensor toward ACh addition. 
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Fig. S7. The current response at different freshly prepared AChE/PANI-Nnao-ZSM-5/GCEs 

(n=5) after being immersed in 50 ppb monocrotopos for 5 min. Inset shows corresponding SWV 

response at 5 different AChE/PANI-Nnao-ZSM-5/GCEs in the presence of 1 mM ACh in 0.002 

M PBS containing 0.1 M NaCl (pH 7.4) after being immersed in 50 ppb monocrotopos for 5 min.  
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Fig. S8. The current response at five different measurements using same AChE/PANI-Nano-

ZSM-5/GCE after being immersed in 50 ppb monocrotopos for 5 min. Inset shows 

corresponding SWV response at 5 different measurements using same AChE/PANI-Nano-ZSM-

5/GCE in the presence of 1 mM ACh in 0.002 M PBS containing 0.1 M NaCl (pH 7.4) after 

being immersed in 50 ppb monocrotopos for 5 min.  
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Scheme S1. (a) Hydrolysis of acetylcholine by enzyme AChE and (b) Inhibition of enzyme 

AChE by organophosphate pesticides (OP) at AChE/PANI-Nano-ZSM-5/GCE biosensor. 
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Table S1. Comparison of AChE/PANI-Nano-ZSM-5/GCE biosensor with other biosensors 

reported in the literature for OP detection. 

S.No. Modified 
electrode 

 

OP pesticide Linear 
range     
(ppb) 

Detection 
limit  
(ppb) 

Michaelis
-Menten 
constant 

Reference 

1. ZnO-AChE paraoxon 35 – 1380 35 - 5 
2. AChE-TiO2-

G/GCE 
carbaryl 1 – 15 0.3 220 µM 6 

3. AChE-PAn-PPy-
MWCNTs/GCE 

Malathion 10 – 500 1 - 7 

4. AChE/PBNCs/rGO monocrotophos 1 – 600 0.1 - 8 
5. AChE/gold 

nanoparticle/sol–
gel 

Monocrotophos 0.1 – 1000 0.6 450 µM 9 

6. AChE-AuNP–
polypyrrole 
nanowires 

Methyl 
parathion 

5 – 120 2 - 10 

7. Au–TiO2/chitosan Parathion 1 – 7000 0.5 - 11 
8. PPy-AChE-Geltn-

Glut/Pt 
Paraoxon 12.5 – 150 1.1 2 mM 12 

9. CdTe/gold 
nanoparticles 

modified 
chitosan 

microspheres 

Monocrotophos 1 – 1000 0.3 - 13 

10. MWCNT for solid-
phase extraction  

Methyl 
parathion 

50 – 2000 5 - 14 

11. AChE–Er-GRO–
Nafion/GCE 

dichlorvos 5 – 100 2 700 µM 15 

12. AChE-MWCNTs-
Au-CHIT/GCE 

malathion 1 – 1000 0.6 268 µM 16 

13. AChE/PANI-
Nano-ZSM-5/GCE 

Monocrotopos 
Dichlorvos 

1 -1000 
3 - 1000 

0.1 
0.2 

232 µM This work 

 

 

 

 

 

 

 



13 
 

Table S2. The electro-catalytic response of AChE/PANI-Nano-ZSM-5/GCE biosensor toward 

the detection of different OP pesticides. 

S.No. OP pesticide Linear range 

(ppb) 

Detection 

limit (ppb) 

Inhibition 

time (min) 

Reactivation 

time (min) 

1. 
P O
O

O
O

NH

O  

Monocrotopos 

1 - 1000 0.1 5 7 

2. 
P OO
O

O

ClCl  
Dichlorvos 

3 - 1000 0.2 5 7 
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