Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Polyaniline-zeolite nanocomposite material based acetylcholinestrase

biosensor for the sensitive detection of acetylcholine and organophosphates

Balwinder Kaur and Rajendra Srivastava*

Supporting Information

Synthesis Mechanism for PANI-Nano-ZSM-5

PANI-Nano-ZSM-5 hybrid material was synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate (APS) in an aqueous zeolite suspension by the in-situ surface polymerization method. Nano-ZSM-5 was first surface functionalized with propyl amine group to favor the growth of PANI film on the surface of Nano-ZSM-5 and not in the bulk solution. P123 is a neutral polymeric surfactant and is used to prepare a variety of mesostructured materials.^{1, 2} P123 is amphiphilic and non ionic surfactant and it can form polymer coils in aqueous solution under a dilute concentration.³ P123 macromolecules could be attached on the peripheral amine groups of Nano-ZSM-5 nanoparticles through hydrogen bonding. Sodium dodecyl sulfate (SDS) was subsequently added to the solution, which could form a double surfactant layer with negative polar head group of SDS molecule. Aniline monomers could form cationic anilinium ions (An⁺) under acidic condition. An⁺ could adsorb on the surface of Nano-ZSM-5 with electrostatic interaction with double surfactant layer. Upon the addition of APS, PANI nucleation could takes place that are stabilized by the P123/SDS double surfactant layer attached on Nano-ZSM-5 surface.⁴ The polymerization usually takes place preferentially and continuously in proximity to existing PANI. Hence, the polymerization was initiated, propagated, and terminated on the surface of Nano-ZSM-5, rather than in bulk solution. Therefore, PANI film was formed on the surface of Nano-ZSM-5.

Fig. S1. (a) XRD pattern (plane shown here represent the incorporation of PANI in the nanocomposite, remaining XRD diffraction corresponds to Nano-ZSM-5) and (b) N_2 -adsorption isotherm of PANI-Nano-ZSM-5 nanocomposite material (inset shows pore size distribution).

The XRD pattern of PANI-Nano-ZSM-5 exhibited the diffraction peaks corresponding to both, PANI and Nano-ZSM-5, phases. The N₂-adsoption isotherm for PANI-Nano-ZSM-5 exhibited type-IV isotherm similar to that of mesoporous materials. The mesopores for PANI-Nano-ZSM-5 showed a narrow pore size distribution (5-8 nm). The total surface area, external surface area and total pore volume for PANI-Nano-ZSM-5 was found to be 297 m²/g, 123 m²/g, and 0.41 cm³/g, respectively.

Fig. S2. SEM image of PANI-Nano-ZSM-5 nanocomposite.

The SEM image confirmed that PANI film was formed on the surface of spherical Nano-ZSM-5 particles. SEM image also confirmed that no separate phase for bulk PANI was observed.

Fig. S3. TGA thermograms of Nano-ZSM-5-Pr-NH₂, and PANI-Nano-ZSM-5 materials at a heating rate of 10 K/min recorded in air stream.

The first weight loss below 473 K in the TGA curves for the samples indicates the loss of physically adsorbed water molecules. In the TGA curve for Nano-ZSM-5-Pr-NH₂, the second weight loss between 525-875 K can be attributed to the decomposition of organic propylamine moiety anchored on the surface of Nano-ZSM-5 and the residual weight refers to the content of Nano-ZSM-5 in Nano-ZSM-5-Pr-NH₂. TGA analysis confirmed that Nano-ZSM-5-Pr-NH₂ contains 11 wt % functionalized organic group (-Pr-NH₂). In the TGA curve for PANI-Nano-ZSM-5, the combustion of PANI in air stream was completed at 913 K and the residual weight refers to the content of Nano-ZSM-5 in the nanocomposite. TGA confirms that PANI-Nano-ZSM-5 nanocomposite contains 40.7 wt % Nano-ZSM-5 and 43.8 wt % PANI. Nano-ZSM-5/PANI weight ratio was found to be 0.93, which was very close to their initial weight ratio.

Fig. S4. SWVs at different modified electrodes (PANI-Nano-ZSM-5/GCE, AChE/PANI/GCE, and AChE/PANI-Nano-ZSM-5/GCE) in 0.002 M PBS containing 0.1 M NaCl (pH 7.4) in the presence of 1 mM ACh.

Fig. S5. Influence of enzyme loading on AChE/PANI-Nano-ZSM-5/GCE biosensor response in the presence of 1 mM ACh.

Fig. S6. Lineweaver-Burk plot for amperometric response of AChE/PANI-Nano-ZSM-5/GCE biosensor toward ACh addition.

Fig. S7. The current response at different freshly prepared AChE/PANI-Nnao-ZSM-5/GCEs (n=5) after being immersed in 50 ppb monocrotopos for 5 min. Inset shows corresponding SWV response at 5 different AChE/PANI-Nnao-ZSM-5/GCEs in the presence of 1 mM ACh in 0.002 M PBS containing 0.1 M NaCl (pH 7.4) after being immersed in 50 ppb monocrotopos for 5 min.

Fig. S8. The current response at five different measurements using same AChE/PANI-Nano-ZSM-5/GCE after being immersed in 50 ppb monocrotopos for 5 min. Inset shows corresponding SWV response at 5 different measurements using same AChE/PANI-Nano-ZSM-5/GCE in the presence of 1 mM ACh in 0.002 M PBS containing 0.1 M NaCl (pH 7.4) after being immersed in 50 ppb monocrotopos for 5 min.

Scheme S1b

Scheme S1. (a) Hydrolysis of acetylcholine by enzyme AChE and (b) Inhibition of enzyme AChE by organophosphate pesticides (OP) at AChE/PANI-Nano-ZSM-5/GCE biosensor.

S.No.	Modified	OP pesticide	Linear	Detection	Michaelis	Reference
	electrode	-	range	limit	-Menten	
			(ppb)	(ppb)	constant	
1.	ZnO-AChE	paraoxon	35 - 1380	35	-	5
2.	AChE-TiO ₂ -	carbaryl	1 - 15	0.3	220 µM	6
	G/GCE					
3.	AChE-PAn-PPy-	Malathion	10 - 500	1	-	7
	MWCNTs/GCE					
4.	AChE/PBNCs/rGO	monocrotophos	1 - 600	0.1	-	8
5.	AChE/gold	Monocrotophos	0.1 - 1000	0.6	450 µM	9
	nanoparticle/sol-	_				
	gel					
6.	AChE-AuNP-	Methyl	5 - 120	2	-	10
	polypyrrole	parathion				
	nanowires					
7.	Au-TiO ₂ /chitosan	Parathion	1 - 7000	0.5	-	11
8.	PPy-AChE-Geltn-	Paraoxon	12.5 - 150	1.1	2 mM	12
	Glut/Pt					
9.	CdTe/gold	Monocrotophos	1 - 1000	0.3	-	13
	nanoparticles					
	modified					
	chitosan					
	microspheres					
10.	MWCNT for solid-	Methyl	50 - 2000	5	-	14
	phase extraction	parathion				
11.	AChE-Er-GRO-	dichlorvos	5 - 100	2	700 µM	15
	Nafion/GCE					
12.	AChE-MWCNTs-	malathion	1 - 1000	0.6	268 µM	16
	Au-CHIT/GCE					
13.	AChE/PANI-	Monocrotopos	1 -1000	0.1	232 µM	This work
	Nano-ZSM-5/GCE	Dichlorvos	3 - 1000	0.2		

 Table S1. Comparison of AChE/PANI-Nano-ZSM-5/GCE biosensor with other biosensors

 reported in the literature for OP detection.

S.No.	OP pesticide	Linear range	Detection	Inhibition	Reactivation
		(ppb)	limit (ppb)	time (min)	time (min)
1.	0	1 - 1000	0.1	5	7
	O-P=O				
	[/] O NH				
	II O				
	Monocrotopos				
2.	0	3 - 1000	0.2	5	7
	O - P = O				
	CI [°] CI				
	Dichlorvos				

Table S2. The electro-catalytic response of AChE/PANI-Nano-ZSM-5/GCE biosensor toward the detection of different OP pesticides.

References

- 1. M. U. Anu Prathap, B. Kaur and R. Srivastava, J. Colloid Interface Sci., 2012, **381**, 143-151.
- M. U. Anu Prathap, B. Thakur, S. N. Sawant and R. Srivastava, *Colloids Surf.*, *B*, 2012, 89, 108-116.
- 3. P. Alexandridis and T. A. Hatton, *Colloids Surf.*, A, 1995, 96, 1-46.
- 4. S. Xuan, Y.-X. J. Wang, K. C.-F. Leung and K. Shu, J. Phys. Chem. C, 2008, **112**, 18804-18809.
- R. Sinha, M. Ganesana, S. Andreescu and L. Stanciu, *Anal. Chim. Acta*, 2010, 661, 195-199.
- K. Wang, H.-N. Li, J. Wu, C. Ju, J.-J. Yan, Q. Liu and B. Qiu, *Analyst*, 2011, 136, 3349-3354.
- 7. D. Du, X. Ye, J. Cai, J. Liu and A. Zhang, *Biosens. Bioelectron.*, 2010, 25, 2503-2508.
- 8. L. Zhang, A. Zhang, D. Du and Y. Lin, *Nanoscale*, 2012, 4, 4674-4679.
- 9. D. Du, S. Chen, J. Cai and A. Zhang, *Biosens. Bioelectron.*, 2007, 23, 130-134.
- 10. J. Gong, L. Wang and L. Zhang, *Biosens. Bioelectron.*, 2009, 24, 2285-2288.
- 11. Y. Qu, H. Min, Y. Wei, F. Xiao, G. Shi, X. Li and L. Jin, *Talanta*, 2008, **76**, 758-762.
- 12. R. R. Dutta and P. Puzari, *Biosens. Bioelectron.*, 2014, **52**, 166-172.
- 13. D. Du, S. Chen, D. Song, H. Li and X. Chen, *Biosens. Bioelectron.*, 2008, 24, 475-479.
- D. Du, M. Wang, J. Zhang, J. Cai, H. Tu and A. Zhang, *Electrochem. Commun.*, 2008, 10, 85-89.
- 15. S. Wu, F. Huang, X. Lan, X. Wang, J. Wang and C. Meng, Sens. Actuators, B: Chem., 2013, **177**, 724-729.
- D. Du, M. Wang, J. Cai, Y. Qin and A. Zhang, Sens. Actuators, B: Chem., 2010, 143, 524-529.