Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

How stereochemistry decides the selectivity: an approach towards metal ion detection

Manas Kumar Bera, ChanchalChakraborty and Sudip Malik*

Polymer Science Unit, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata – 700032, India.

Email: psusm2@iacs.res.in

Table of contents	Page
1) Figure S1	S2
2) Figure S2	S2
3) Figure S3	S 3
4) Figure S4	S 3
5) Figure S5	S4
6) Figure S6	S4
7) Figure S7	S5
8) Figure S8	S5
9) Figure S9-S10	S6
10) Figure S11-S12	S7
11) Figure S13-S14	S8
12) Figure S15-S28	S9-S15
13) Figure S29-S30	S16
14) Figure S31	S17
15) Figure S32	S18
16) Figure S33	S19
17) Figure S34	S20
18) Figure S35-S41	S21-S25

NMR Study:

Figure S2.¹³C-NMR of Fsal

Figure S4.¹³C-NMR of FSP1

Figure S6.¹³C-NMR of FSP2

Figure S8.¹³C-NMR of FSP3

Figure S9. MALDI-TOF spectrum of FSP1 in ditranol matrix bearing repetitive monomeric units (with their corresponding mass fragments M) up to a degree of polymerization (DP) of 9 ($M_W \sim 5900$).

Figure S10. MALDI-TOF spectrum of FSP2 in ditranol matrix bearing repetitive monomeric units (with their corresponding mass fragments M and m) up to a degree of polymerization (DP) of 9 ($M_W \sim 6300$).

Figure S11. MALDI-TOF spectrum of FSP3 in ditranol matrix bearing repetitive monomeric units (with their corresponding mass fragments M and m) up to a degree of polymerization (DP) of 9 ($M_W \sim 6400$).

Figure S12. FTIR spectra of FSal, FSP1, FSP2, and FSP3.

Figure S13. TGA thermograms of FSP1, FSP2 and FSP3.

Figure S14. Absorption spectra of FSP1 (15 μ M in THF) upon addition of 22 equiv. of different cations in H₂O.

Figure S15. Absorption spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of different cations in H₂O.

Figure S16. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Ag⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S17. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Al³⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S18.(a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Ca²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S19. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Co²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S20. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 3 equiv. of Cu²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S21. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 3-22 equiv. of Cu²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S22. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Fe²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S23. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Hg²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S24. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Mg²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S25. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Ni²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S26. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Sn²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S27. (a) Absorption and (b) emission titration spectra of FSP2 (15 μ M in THF) upon addition of 22 equiv. of Zn²⁺ in H₂O. Excitation at 340 nm (slit 5/5).

Figure S28. Absorption spectra of FSP3 (15 μ M in THF) upon addition of 22 equiv. of different cations in H₂O.

Figure S29. Plot of I/I_0 -1vs $[Zn^{2+}]$ in FSP3-Zn²⁺ complex for lower detection limit measurement.

Figure S30. Fluorescence response of FSP3 (15 μ M in THF) towards Zn²⁺ in presence of excess other cations (10 equiv. compare to [Zn²⁺]).

Figure S31. CD spectra of FSP3 (15 μ M) and FSP3 with addition of 0-22 equiv. Zn²⁺ in THF.

Figure S32. Theoretical bond distances and bond angles calculation of monomeric unit of FSP3- Zn^{2+} complex.

Low-lying transition calculation for FSP3

Figure S33. HOMO and LUMO of repeating unit of FSP2.

Low-lying transition calculation for repeating unit of FSP3-Zn²⁺

Figure S34. HOMO and LUMO of repeating unit of FSP3- Zn^{2+} complex.

NMR Titration: First polymers were solubilized in $CDCl_3$ (10 mM with respect to monomeric unit) and Zn salt was in DMSO-d⁶. Then titrations were performed by addition of Zn^{2+} in to polymer solutions.

Figure S36. ¹H-NMR Titration of FSP2 with Zn²⁺.

Figure S37. ¹H-NMR Titration of FSP3 with Zn²⁺.

Figure S38. COSY NMR of FSP2 with Zn²⁺.

Figure S39. COSY NMR of FSP3 with Zn^{2+} .

Figure S40. NOESY NMR of FSP2 with Zn^{2+} .

Figure S41. NOESY NMR of FSP3 with Zn^{2+} .