ELECTRONIC SUPPLEMENTARY INFORMATION

Photophysical characterization of Tröger's base molecular scaffolds: A combined theoretical and experimental study

Débora Müller Pimentel Aroche,^{*a*} Josene Maria Toldo,^{*b*} Rodrigo Roceti Descalzo,^{*b*} Paulo Fernando Bruno Gonçalves,^{*,*b*} and Fabiano Severo Rodembusch^{*,*a*}

^aGrupo de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500. CEP 91501-970 Porto Alegre-RS, Brazil. Fax: +55 51 33087204; Tel: +55 51 33087204; E-mail: fabiano.rodembusch@ufrgs.br

^bGrupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves, 9500, CP 15003, CEP 91501-970 Porto Alegre-RS, Brazil; E-mail: paulo@iq.ufrgs.br

Summary

2
3
11
15
16

1. Synthesis

Precursor 1c. 4-aminobenzoic acid (2.0 g, 14.58 mmol) was dissolved in methanol (30 ml). Concentrated sulfuric acid (1.4 ml) was added dropwise. The mixture was heated to reflux for 36 h. Methanol was removed in a rotary

evaporator and water (10 ml) was added to the mixture. The pH was adjusted to 3 with a 2M NaOH solution. The precipitated formed was filtered and washed with distilled water. **(1c)**: Isolated yield: 1.87 g (85%). FTIR (KBr, cm⁻¹): 3420, 3351, 3227, 2975, 2938, 1688, 1637, 1600, 1516, 1435, 1289, 1176, 1120. ¹H NMR (300 MHz, CDCl₃), δ (ppm): 7.85 (d, *J* = 8.79 Hz, 2H), 6.63 (d, *J* = 8.79 Hz, 2H), 3.85 (s, 3H).

2. Spectroscopic characterization

Fig. ESI1 ¹H NMR spectra of 2a in CDCl₃.

Fig. ESI2 ¹³C NMR (APT) spectra of 2a in CDCl_{3.}

4

Fig. ESI3 ¹H NMR spectra of 2b in CDCl₃.

Fig. ESI4 ¹³C NMR (APT) spectra of **2b** in CDCl₃.

Fig. ESI5 ¹H NMR spectra of 2c in CDCl₃.

3. Fluorescence lifetime data

Table ESI1. Relevant data from the time resolved fluorescence spectroscopy from TBs **2a-c**, where λ_{em} is the analyzed emission wavelength, EPLED is the excitation source in nanometers, A is the offset, B is the pre-exponential factor, τ is the fluorescence lifetime, Rel. is relative contribution and χ^2 is the chi-square of the fit.

ТВ	Solvent	$\lambda_{em}(\mathbf{nm})$	EPLED (nm)	Α	B ₁	Std. Dev.	$\tau_1(ns)$	Std. Dev.	Rel. %	χ^2
2a _	1,4-dioxane	345	310	33.68	1778	12.08	1.467	8.678E-12	100	1.187
	Acetonitrile	349		49.17	2924	15.24	1.508	6.780E-12	100	1.151
2b _	1,4-dioxane	344		47.38	700.7	7.417	1.804	1.836E-11	100	1.178
	Acetonitrile	345		43.09	665.6	9.025	1.152	1.443E-11	100	1.223
2c _	1,4-dioxane	432		87.46	1775	12.75	1.420	9.260E-12	100	1.065
	Acetonitrile	450		118.7	384.4	6.398	1.868	3.548E-11	100	1.033

Fig. ESI9 Fit results of the TB 2a in 1,4-dioxane @345 nm EPLED 310 nm. Fluorescence decay curves (yellow) and the single exponential function fits (cyan). The residuals are also presented (magenta).

Fig. ESI10 Fit results of the TB **2a** in acetonitrile @349 nm EPLED 310 nm. Fluorescence decay curves (yellow) and the single exponential function fits (cyan). The residuals are also presented (magenta).

Fig. ESI11 Fit results of the TB **2b** in 1,4-dioxane @344 nm EPLED 310 nm. Fluorescence decay curves (yellow) and the single exponential function fits (cyan). The residuals are also presented (magenta).

Fig. ESI12 Fit results of the TB **2b** in acetonitrile @345 nm EPLED 310 nm. Fluorescence decay curves (yellow) and the single exponential function fits (cyan). The residuals are also presented (magenta).

Fig. ESI13 Fit results of the TB **2c** in 1,4-dioxane @432 nm EPLED 310 nm. Fluorescence decay curves (yellow) and the single exponential function fits (cyan). The residuals are also presented (magenta).

Fig. ESI14 Fit results of the TB **2c** in acetonitrile @450 nm EPLED 310 nm. Fluorescence decay curves (yellow) and the single exponential function fits (cyan). The residuals are also presented (magenta).

4. Lippert-Mataga Data

TR	Plot	Parameters					
		A	Error	В	Error	R	
1	$v_{\rm A}$ vs. Δf	34413.520	127.41513	2281.599	475.23538	0.876	
	$v_{\rm F}$ vs. Δf	29358.861	109.67582	-2635.320	409.07095	-0.925	
	$v_{\rm A}$ - $v_{\rm F}$ vs. Δf	5054.670	133.122	4916.885	496.521	0.966	
	$v_{\rm A}$ vs. Δf	34673.253	94.545	-929.570	357.8315	-0.676	
2	$v_{\rm F}$ vs. Δf	29178.850	227.128	-2037.706	859.622	-0.642	
	$v_{\rm A}$ - $v_{\rm F}$ vs. Δf	5494.399	291.596	1108.136	1103.617	0.334	
	$v_{\rm A}$ vs. Δf	26769.075	152.81729	198.451	596.56222	0.117	
3	$v_{\rm F}$ vs. Δf	25726.031	81.68957	-10316.436	318.89658	-0.997	
	$v_{\rm A}$ - $v_{\rm F}$ vs. Δf	1043.045	179.963	10514.887	702.534	0.983	

Table ESI2. Parameters for the linear regression (Y = A + BX) from the *Lippert-Mataga* plot.

 Table ESI3. Calculated Onsager's radio to the TB's 2a-c.

	Gas phase (S ₀)			
Tröger's base	TB1	TB2	TB3	
Onsager cavity radius (Å)	4.94	5.14	5.41	

5. Theoretical calculations

Fig. ESI15 Representative equilibrium structures (front view) of **2a** in different organic solvents in the ground (left) and excited state (right).

Fig. ESI16 Representative equilibrium structures (lateral view) of **2a** in different organic solvents in the ground (left) and excited state (right).

Fig. ESI17 Representative equilibrium structures (front view) of **2b** in different organic solvents in the ground (left) and excited state (right).

Fig. ESI18 Representative equilibrium structures (lateral view) of **2b** in different organic solvents in the ground (left) and excited state (right).

Fig. ESI19 Representative equilibrium structures (front view) of **2c** in different organic solvents in the ground (left) and excited state (right).

Fig. ESI20 Representative equilibrium structures (lateral view) of **2c** in different organic solvents in the ground (left) and excited state (right).

Fig. ESI21 Frontier orbitals of **2a** (top), **2b** (middle) and **2c** (bottom) calculated in ethyl acetate at PBE0/aug-cc-pVDZ//PBE0/cc-pVDZ level of theory.

TB	Orbital	Populational analysis
1	НОМО	+9.2% 5PZ(N5) $+9.2%$ 5PZ(N11) $+4.7%$ 6PZ(N5) $+4.7%$ 6PZ(N11) $+3.4%$ 5PX(N5) $+3.4%$ 5PX(N11)
1	LUMO	+4.2% 5PY(C7) + 4.2% 5PY(C1) + 4.1% 6PY(C7) + 4.1% 6PY(C1) + 4.0% 5PY(C10) + 4.0% 5PY(C4)
2	НОМО	+ 8.6% 5PZ(N11) + 8.6% 5PZ(N5) + 4.5% 6PZ(N11) + 4.5% 6PZ(N5) + 3.2% 5PX(N5) + 3.2% 5PX(N11)
	LUMO	+ 4.4% 6PY(C7) + 4.4% 6PY(C1) + 4.2% 7PY(C7) + 4.2% 7PY(C1) + 4.1% 4S(C13) + 3.8% 5PY(C10)
3	НОМО	+ 11.1% 5PZ(N5) + 11.1% 5PZ(N11) + 5.4% 6PZ(N5) + 5.4% 6PZ(N11) - 2.7% 5PY(N5) + 2.7% 5PY(N11)
	LUMO	- 3.4% 5PY(C16) - 3.4% 5PY(C15) - 2.9% 5PY(C18) - 2.9% 5PY(C19) + 2.7% 5PY(C1) + 2.7% 5PY(C7)

Table ESI4. Populational ana	lysis of 2a-c HOMO	and LUMO orbitals	in gas phase
------------------------------	--------------------	-------------------	--------------

Fig. ESI22 Populational analysis of **2a-c** in gas phase calculated at PBE1PBE/aug-cc-pVDZ//PBE1PBE/cc-pVDZ level of theory.

Fig. ESI23 Electrostatic potential surface of Tröger's base **2a** (top), **2b** (middle) and **2c** (bottom) in 1,4-dioxane in the ground electronic state (left) and first electronic excited state (right). The highest electron density potential is represented in red and the lowest electron density is represented in blue.