Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information:

A highly selective and sensitive single click novel fluorescent off-on sensor for copper

and sulfide ions detection directly in aqueous solution using curcumin nanoparticles

Dhanaji P. Bhopate, Prasad G. Mahajan, Kalyanrao M Garadkar, Govind B. Kolekar and

Shivajirao R. Patil*

Fluorescence Spectroscopy Laboratory, Department of Chemistry, Shivaji University Kolhapur.

Fig. S1: Fluorescence responses of CURNPs, ($\lambda_{ex} = 420 \text{ nm}$) without and upon the addition of metal ions (concentration 62.5 ng.mL⁻¹ of each Hg²⁺, Sn²⁺, Pb²⁺, Cd²⁺, Zn²⁺, Ni²⁺, Ca²⁺, K ⁺, Na⁺, Al³⁺ and Cu²⁺) in aqueous solution of pH 4 by using acetate buffer.

Fig. S2: Job plot for determining the stoichiometry of CURNPs and Cu^{2+} in aqueous solution of pH=4.. The total concentration of CURNPs and Cu^{2+} is 15 μ M, $X_{CURNPs} = [CURNPs]/([Cu^{2+}] + [CURNPs]).$

Fig. S3: Hill Plot for bonding mode between CURNPs and Cu^{2+} ions.

Conclusion: Hill coefficient (η) is 1.864 indicating CURNPs binds with Cu²⁺ ion with ratio 2:1.

Fig. S4: The binding constants (K) from Benesi–Hildebrand plots of fluorescence intensity response of the CURNPs toward Cu²⁺ anion.

Figure S5: Representation of the lifetime spectra of CURNPs and their variation in response to the addition of Cu²⁺ to CURNPs suspension: (Green) in the absence Cu²⁺, blue and red in the presence 50 and 100 ng.mL⁻¹ Cu²⁺ respectively.

Figure S6: Cyclic voltamogram of CURNPs without ions (Blue line), CURNPs + [Cu²⁺ 50 ng.ml⁻¹] (dark blue), and [CURNPs + [Cu²⁺ 50ng.ml⁻¹] + [S²⁻ 7.5 ng.ml⁻¹]] (red line). The CV measurement was done by applying a voltage potential at 1.4V, scan rate 50 mv/s. using aqueous solvent. The working and counter electrode was Platinum electrode, reference electrode was Ag/Agcl.

Fig. S7: Fluorescence responses of CURNPs-Cu²⁺ ensemble suspension ($\lambda_{ex} = 420 \text{ nm}$) and upon the addition of anoins (7.5 ng.mL⁻¹ each of Cl⁻, CH₃COO⁻, HPO₄⁻, NO₃⁻, HSO₃⁻, BrO₃⁻, PO₄³⁻, SCN⁻, SO₄²⁻, F⁻ and S²⁻ in aqueous solution of pH 4 by using acetate buffer.

Figure S8: Fluorescence images of curcumin nanoparticles (A), fluorescence off image (B) of curcumin nanoparticles by copper ion i.e. (CURNPs+ Cu^{2+}) under excitation and fluorescence on images (C) of CURNPs+ Cu^{2+} by Sulfide ion under excitation.