Electronic Supplementary Information (ESI) for *New Journal of Chemistry*

Two Gd^{III} complexes derived from dicarboxylate ligands as cryogenic magnetorefrigerants

Sui-Jun Liu, *a Teng-Fei Zheng,^a Jun Bao,^a Piao-Ping Dong,^a Jin-Sheng Liao,^a Jing-Lin Chen,^a He-Rui Wen,^{*a} Jian Xu^{*b} and Xian-He Bu^b

^aSchool of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China ^bDepartment of Chemistry, TKL of Metal- and Molecule-Based Material Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P.R. China

*Corresponding author. (S.-J. Liu) E-mail: liusuijun147@163.com, Tel: +86-797-8312204

(H.-R. Wen) E-mail: wenherui63@163.com, Tel: +86-797-8312553

(J. Xu) E-mail: jxu@nankai.edu.cn, Tel: +86-22-23502458.

Complex	$M_{ m W}/N_{ m Gd}$	Magnetic interaction (θ, K)	-ΔS _m ^{max} [J kg ⁻¹ K ⁻¹] (ΔH)	$-\Delta S_{\rm m}^{\rm max}$ [mJ cm ⁻³ K ⁻¹]
$[Gd(OH)CO_3]_{\infty}^{S1}$	234.27	AF (-1.05)	66.4 (7 T)	355
$\{Gd(HCOO)_3\}_{\infty}^{S2}$	292.30	AF (-0.3)	55.9 (7 T)	215.7
$[Gd_6]_{\infty}^{S3}$	278.25	AF (-5.50)	46.6 (7 T)	206.81
$[Ln_4(SO_4)_4(\mu_3\text{-}OH)_4(H_2O)_4]_{\infty}{}^{S4}$	288.34	AF (-1.57)	51.29 (7 T)	198.85
$\begin{array}{l} [Gd_4(\mu_4\text{-}SO_4)_3(\mu_3\text{-}OH)_4(\mu_2\text{-}C_2O_4)(\mu_2\text{-}\\ H_2O)(H_2O)_4]\cdot H_2O^{S5} \end{array}$	295.33	AF (-1.57)	51.49 (7 T)	190.46
$\{[Gd_6(OH)_8(suc)_5(H_2O)_2]\cdot 4H_2O\}_{\infty}^{-S6}$	294.67	AF (-2.15)	48 (7 T)	143.52
$[Gd(C_4O_4)(C_2O_2)_{0.5}(H_2O)_2]_{\infty}^{S7}$	349.33	AF (-0.18)	44.0 (7 T)	127.6
$[Gd(HCOO)(C_8H_4O_4)]_{\infty}^{S8}$	366.38	AF (-0.45)	47.0 (9 T)	125.11
$\{[Gd_2(OH)_2(suc)_2(H_2O)]\cdot 2H_2O\}_{\infty}^{S6}$	317.36	AF (-2.78)	42.8 (7 T)	120.48
$[Gd_2(OH)_2(oda)_2(H_2O)_4]_{\infty}$ (1)	342.36	AF (-1.06)	43.3 (7 T)	116.6
[Gd(cit)(H ₂ O)] ₂ ⁸⁹	363.36	F (1.13)	43.6 (7 T)	115.23
$[Gd(HCOO)(OAc)_2(H_2O)_2]_{\infty}^{S10}$	356.38	AF	45.9 (7 T)	110.02
$[Gd(OAc)_{3}(H_{2}O)_{0.5}]_{\infty}^{S11}$	343.39	AF (-0.22)	47.7 (7 T)	106.28
$[Gd(C_4O_4)(OH)(H_2O)_4]_{\infty}^{S12}$	358.36	AF (-0.12)	43.8 (7 T)	104.59
$\{[Gd_2(IDA)_3] \cdot 2H_2O\}_{\infty}^{S13}$	371.90	AF (-0.90)	40.6 (7 T)	100.69
$[Gd(OAc)_3(MeOH)]_{\infty}^{S11}$	366.42	F (0.34)	45.0 (7 T)	96.71
$\{[Gd(fum)(ox)_{0.5}(H_2O)_2] \cdot 2H_2O\}_{\infty}(2)$	387.38	F (0.93)	37.1 (7 T)	93.4
$[Gd_{36}]_{\infty}^{S14}$	345.00	AF (-2.43)	39.66 (7 T)	91.34
$[Gd_2(piv)_5(\mu_3\text{-}OH)(H_2O)]_{\infty}^{S9}$	427.57	AF (-0.86)	37.5 (7 T)	61.13

Table S1. Comparison of $-\Delta S_m^{max}$ (larger than 37.0 J kg⁻¹ K⁻¹ with $\Delta H \le 9$ T) among title complexes and Gd^{III} coordination polymers associated with potential molecular magnetorefrigerants.

 $-\Delta S_{\rm m}^{\rm max} [{\rm mJ \ cm^{-3} \ K^{-1}}] = -\Delta S_{\rm m}^{\rm max} [{\rm J \ kg^{-1} \ K^{-1}}]*\rho_{\rm cald} [{\rm g \ cm^{-3}}]$

References

S1. Y.-C. Chen, L. Qin, Z.-S. Meng, D. Yang, C. Wu, Z. Fu, Y.-Z. Zheng, J.-L. Liu, R. Tarasenko, M. Orendáč, J. Prokleska, V. Sechovský and M.-L. Tong, J. Mater. Chem. A, 2014, 2, 9851-9858.

- S2. G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. Collison and M. Evangelisti, *Adv. Mater.*, 2013, 25, 4653-4656.
- S3. Y.-L. Hou, G. Xiong, P.-F. Shi, R.-R. Cheng, J.-Z. Cui and B. Zhao, Chem. Commun., 2013, 49, 6066-6068.
- S4. S.-D. Han, X.-H. Miao, S.-J. Liu and X.-H. Bu, Chem. Asian J., 2014, 9, 3116-3120.
- S5. S.-D. Han, X.-H. Miao, S.-J. Liu and X.-H. Bu, Inorg. Chem. Front., 2014, 1, 549-552.
- S6. Y.-C. Chen, F.-S. Guo, Y.-Z. Zheng, J.-L. Liu, J.-D. Leng, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovský and M. L. Tong, *Chem. Eur. J.*, 2013, **19**, 13504-13510.
- S7. S. Biswas, H. S. Jena, A. Adhikary and S. Konar, Inorg. Chem., 2014, 53, 3926-3928.
- S8. R. Sibille, T. Mazet, B. Malaman and M. Francois, Chem. Eur. J., 2012, 18, 12970-12973.
- S9. S.-J. Liu, C.-C. Xie, J.-M. Jia, J.-P. Zhao, S.-D. Han, Y. Cui, Y. Li and X.-H. Bu, *Chem. Asian J.*, 2014, 9, 1116-1122.
- S10. G. Lorusso, M. A. Palacios, G. S. Nichol, E. K. Brechin, O. Roubeau and M. Evangelisti, *Chem. Commun.*, 2012, 48, 7592-7594.
- S11. F.-S. Guo, J.-D. Leng, J. L. Liu, Z. S. Meng and M. L. Tong, Inorg. Chem., 2012, 51, 405-413.
- S12. S. Biswas, A. Adhikary, S. Goswami and S. Konar, Dalton Trans., 2013, 42, 13331-13334.
- S13. J.-M. Jia, S.-J. Liu, Y. Cui, S.-D. Han, T.-L. Hu and X.-H. Bu, Cryst. Growth Des., 2013, 13, 4631-4634.
- S14. M. Wu, F. Jiang, X. Kong, D. Yuan, L. Long, S. A. Al-Thabaiti and M. Hong, Chem. Sci., 2013, 4, 3104-3109.

Gd1—O6	2.260(10)	Gd1—O1W	2.437(9)
Gd1—O6 ^{#1}	2.284(9)	Gd1—O4	2.439(7)
Gd1	2.377(9)	Gd1—O3	2.508(7)
Gd1—01	2.416(8)	Gd1—O2W	2.520(8)
O6—Gd1—O6 ^{#1}	66.2(3)	O2 ^{#2} —Gd1—O4	78.3(3)
O6—Gd1—O2 ^{#2}	83.0(4)	O1—Gd1—O4	126.6(2)
O6 ^{#1} —Gd1—O2 ^{#2}	115.5(4)	O1W—Gd1—O4	80.2(3)
O6—Gd1—O1	91.6(4)	O6—Gd1—O3	138.0(3)
O6 ^{#1} —Gd1—O1	87.5(4)	O6 ^{#1} —Gd1—O3	78.7(3)
O2 ^{#2} —Gd1—O1	151.1(3)	O2 ^{#2} —Gd1—O3	134.9(3)
O6—Gd1—O1W	145.7(3)	O1—Gd1—O3	63.6(2)
O6 ^{#1} —Gd1—O1W	148.1(3)	O1W—Gd1—O3	71.6(3)
O2 ^{#2} —Gd1—O1W	79.6(3)	O4—Gd1—O3	63.4(2)
O1—Gd1—O1W	89.7(3)	O6—Gd1—O2W	75.7(3)
O6—Gd1—O4	124.6(3)	O6 ^{#1} —Gd1—O2W	138.2(3)
O6 ^{#1} —Gd1—O4	76.1(3)	O2 ^{#2} —Gd1—O2W	74.4(3)
O4—Gd1—O2W	143.4(3)	O1—Gd1—O2W	76.7(3)
O3—Gd1—O2W	124.6(3)	O1W—Gd1—O2W	71.3(3)
-0 1 11			

Table S2. Selected bond lengths (Å) and angles (°) for 1^a

^aSymmetry code: #1: -x+2, -y, -z+2; #2: x, y-1, z.

_

Gd1—O1 ^{#1}	2.352(3)	Gd1—O3	2.443(3)
Gd1—O2	2.474(3)	Gd1—O1W	2.472(3)
C2	156.1(3)	O1 ^{#2} —Gd1—O2 ^{#3}	107.32(11)
O1 ^{#2} —Gd1—O1 ^{#1}	144.99(14)	O1 ^{#1} —Gd1—O2 ^{#3}	83.81(11)
O1 ^{#2} —Gd1—O3 ^{#3}	140.53(9)	O3 ^{#3} —Gd1—O2 ^{#3}	70.71(10)
O1 ^{#1} —Gd1—O3 ^{#3}	74.40(9)	O3—Gd1—O2 ^{#3}	78.62(10)
O1 ^{#2} —Gd1—O3	74.40(9)	O1W ^{#3} —Gd1—O2 ^{#3}	72.80(10)
O1 ^{#1} —Gd1—O3	140.53(9)	O1W—Gd1—O2 ^{#3}	143.61(10)
O3 ^{#3} —Gd1—O3	66.50(12)	O2—Gd1—O2 ^{#3}	143.22(14)
O1 ^{#2} —Gd1—O1W ^{#3}	77.21(11)	O1 ^{#2} —Gd1—O1W	74.68(11)
O1 ^{#1} —Gd1—O1W ^{#3}	74.68(11)	O1 ^{#1} —Gd1—O1W	77.21(11)
O3 ^{#3} —Gd1—O1W ^{#3}	133.97(10)	O3 ^{#3} —Gd1—O1W	130.96(10)
O3—Gd1—O1W ^{#3}	130.96(10)	O3—Gd1—O1W	133.97(10)
O3 ^{#3} —Gd1—O2	78.62(10)	O1W ^{#3} —Gd1—O1W	72.37(14)
O3—Gd1—O2	70.71(10)	O1 ^{#2} —Gd1—O2	83.81(11)
O1W ^{#3} —Gd1—O2	143.61(10)	O1 ^{#1} —Gd1—O2	107.32(11)
O1W—Gd1—O2	72.80(10)		
^a Symmetry code: $\#1 \cdot -x + 3/2 =$	$-x+1/2$ $-z+1 \cdot \#2 \cdot x-1/2$	$1 \ y = 1/4 \ -z + 1 \cdot \# 3 \cdot -x + 5/4 \ -y + 1$	/4 7

Table S3. Selected bond lengths (Å) and angles (°) for 2^a

^aSymmetry code: #1: -x+3/2, -y+1/2, -z+1; #2: x-1/4, y-1/4, -z+1; #3: -x+5/4, -y+1/4, z.

D-H···A	D–H	Н•••А	D····A	D-H···A	
O1W–H1WA····O5	0.87	2.09	2.760(12)	133	
O1W–H1WB····O5	0.87	1.89	2.699(12)	154	
O2WH2WB…O4	0.87	2.36	3.119(14)	146	
O6–H6…O1	0.85(11)	2.47(10)	3.285(13)	162(12)	
С2–Н2А••••О4	0.97	0.97	3.159(14)	131	

Table S4. Hydrogen-Bonding Geometry (Å, °) for 1

Fig. S1. View of the 3D packing structure of 1.

Fig. S3. PXRD patterns of 1 (a) and 2 (b).

(a)

Fig. S4. The *M* vs. *H* curves of 1 (a) and 2 (b) at T = 2-10 K and H = 2.5-70 kOe

(a)

Fig. S5. IR spectra of 1 (a) and 2 (b).