Supporting Information

A remarkable ratiometric fluorescent chemodosimeter for very rapid detection of hydrogen sulfide in vapor phase and living cells

Sima Paul,^a Shyamaprosad Goswami^{*a} and Chitrangada Das Mukhopadhyay^b

(a) Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, (Formerly Bengal Engg. and Science University, Shibpur), Howrah-711103, West Bengal, India. Fax: +91 33 2668 2916.

(b) Centre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India

CONTENTS

1. Bar Diagram of BHD towards other nucleophiles	2
2. Calculation of the detection limit	2-3
3. Cell viability assay	3
4. Fluorescence titration of BHD in presence of SH ⁻ in 100% aqueous se	olution4
5. ¹ H-NMR, ¹³ C-NMR and Mass spectra	4-6
6. Fluorescence spectra of receptor with different anions and thiols	6-8
7. References	9

1. Bar Diagram of BHD towards other nucleophiles in UV-vis and fluorescence titration method

Figure S1: (a) Relative absorbance of the BHD in presence of other nucleophiles (b) Bar chart illustrating fluorescence response of free ligand and one equivalent of other nucleophiles in CH_3CN-H_2O (4:6, v/v, 25 ° C) at 413 nm.

2. Calculation of the detection limit:

Figure S2: Fluorescence change of BHD upon gradual addition of SH⁻.

The detection limit DL of **BHD** for HS⁻ was determined from the following equation¹:

DL = K* Sb1/S

Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph we get slope = 11658, and Sb1 value is 11976.67.

Thus using the formula we get the Detection Limit = $2.054 \ \mu\text{M}$ i.e. BHD can detect HS⁻ in this minimum concentration.

3. Cell viability assay:

Figure S3: It represents % cell viability of HCT cells treated with various concentrations (10 μ M–70 μ M) of BHD for 12 h determined by MTT assay. Results are expressed as mean of three independent experiments

4. Fluorescence titration of BHD in presence of SH⁻ in 100% aqueous solution :

Wavelength (nm) Figure S4: Fluorescence spectra of BHD upon addition of SH⁻ in water

5. ¹H NMR, ¹³C NMR and HRMS spectra of BHD and BHD-SH adduct:

¹H NMR spectrum of Receptor i.e. BHD:

¹H NMR spectrum of BHD-SH adduct:

6. Fluorescence emission spectra of BHD with different anions and thiols F', CI', Br', CN', HSO_3' , OCI', S_2O3^{2-} , $S_2O_4^{2-}$, SO_3^{2-} , NO_3' , H_2O_2 , Cys, HCy. The solutions of anions and thiols were prepared F', CI', Br' as their tetra butyl salt, KCN, NaHSO₃, NaOCl, NaS₂O₃, NaS₂O₄, Na₂SO₃, and KNO₃ respectively in CH₃CN-H₂O)

(l)

7. References :

 M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, D. Zhu, Org. Lett. 2008, 10, 1481-1484