Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

S1

Submitted to *New J. Chem.* Version of August 10, 2015

Supporting Information

Surface relief grating growth in thin films of mexylaminotriazinefunctionalized glass-forming azobenzene derivatives

Othmane R. Bennani,^{a,b} Tayel A. Al-Hujran,^c Jean-Michel Nunzi,^a Ribal Georges Sabat,^b and Olivier Lebel^{*c}

^aDepartment of Chemistry, Queen's University, Kingston ON K7L 3N6 Canada ^bDepartment of Physics, Royal Military College of Canada, Kingston ON K7K 7B4 Canada ^cDepartment of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston ON K7K 7B4 Canada

Contents

I.Synthetic procedures and spectral data for compounds 4b-e (S2-S4) II.Additional data on SRG growth for compounds 1 and 4a-e (S5) III.NMR spectra of compounds 4a-e (S6-S21)

*Author to whom correspondence may be addressed: Olivier.Lebel@rmc.ca

I. Synthetic procedures and spectral data for compounds 4b-e

Synthesis of Azo Glass 4b

Glass **4b** was synthesized from 4-(N-(2-hydroxyethyl)-N-ethylamino)-3',5'-dichloroazobenzene by a procedure similar to that used for compound **4a**. Yield: 90 %; T_g 68 °C; FTIR (CH₂Cl₂/KBr) 3300, 3052, 2955, 2919, 2848, 1709, 1629, 1598, 1577, 1568, 1536, 1515, 1451, 1384, 1358, 1244, 1192, 1140, 1125, 1101, 957, 887, 855, 822, 809, 798, 725, 671, 656 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆, 363 K) δ 8.83 (br s, 1H), 7.79 (d, ³*J* = 8.8 Hz, 2H), 7.69 (d, ⁴*J* = 2.0 Hz, 2H), 7.53 (t, ⁴*J* = 2.0 Hz, 1H), 7.36 (s, 2H), 6.93 (br s, 3H), 6.88 (d, ³*J* = 9.0 Hz, 2H), 6.62 (s, 1H), 4.19 (t, ³*J* = 6.0 Hz, 2H), 3.66 (t, ³*J* = 6.0 Hz, 2H), 3.52 (q, ³*J* = 7.1 Hz, 2H), 3.42 (br s, 2H), 3.25 (q, ³*J* = 5.8 Hz, 2H), 2.86 (s, 3H), 2.24 (s, 6H), 1.18 (t, ³*J* = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.4, 162.8, 156.6, 154.6, 151.7, 142.6, 140.2, 137.6, 135.2, 128.4, 126.3, 123.9, 120.7, 118.1, 111.8, 61.5, 49.2, 45.5, 40.4, 40.4, 27.7, 21.6, 12.4 ppm; UV-Vis (CH₂Cl₂): λ_{max} (ϵ) 435 nm (20 000); HRMS (ESI) m/z: [M + H]⁺ calcd. for C₃₁H₃₇Cl₂N₁₀O₂: 651.2473, found: 651.2473.

Synthesis of Azo Glass 4c

Glass **4c** was synthesized from 4-(N-(2-hydroxyethyl)-N-ethylamino)-4'-phenylazoazobenzene by a procedure similar to that used for compound **4a**. Yield: 94 %; T_g 64 °C; FTIR (CH₂Cl₂/KBr) 3405, 3283, 3059, 2969, 2924, 2855, 1709, 1599, 1563, 1512, 1442, 1392, 1353, 1320, 1241, 1189, 1143, 1124, 1000, 851, 822, 810, 768, 735, 687 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆, 363 K) δ 8.29 (br s, 1H), 8.03 (d, ³*J* = 8.3 Hz, 2H), 7.95 (d, ³*J* = 9.6 Hz, 2H), 7.92 (d, ³*J* = 8.1 Hz, 2H), 7.84 (d, ³*J* = 8.8 Hz, 2H), 7.59 (m, 3H), 7.41 (s, 2H), 6.90 (d, ³*J* = 8.8 Hz, 2H), 6.86 (br s, 1H), 6.57 (s, 1H), 6.40 (br s, 1H), 6.33 (br s, 1H), 4.21 (t, ³*J* = 5.8 Hz, 2H), 3.67 (t, ³*J* = 6.8 Hz, 2H), 3.52 (q, ³*J* = 5.8 Hz, 2H), 3.43 (q, ³*J* = 5.8 Hz, 2H), 3.26 (q, ³*J* = 5.8 Hz, 2H), 2.84 (d, ³*J* = 4.5 Hz, 3H), 2.24 (s, 6H), 1.19 (t, ³*J* = 6.8 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 166.5, 166.1, 164.4, 156.7, 154.4, 152.5, 152.2, 151.3, 143.3, 141.0, 137.4, 132.1, 129.9, 126.0, 124.2, 123.3, 123.1, 117.6, 111.8, 61.6, 49.2, 45.5, 40.4, 40.4, 27.7, 21.7, 12.4 ppm; UV-Vis (CH₂Cl₂): λ_{max} (ϵ) 475 nm (28 000); HRMS (ESI) m/z: [M + H]⁺ calcd. for C₃₇H₄₃N₁₂O₂: 709.3446, found: 709.3453.

Synthesis of Azo Glass 4d

To a stirred suspension of N,N'-carbonyldiimidazole (0.700 g, 4.32 mmol) in dry DMF (3 mL) in a dry round-bottomed flask equipped with a magnetic stirrer was slowly added a solution of 2-[4-(N-(2hydroxyethyl)-N-ethylamino)phenylazo]-6-nitrobenzothiazole (1.07 g, 2.88 mmol) in dry DMF (7 mL) at ambient temperature, then the mixture was stirred for 18 h under nitrogen atmosphere. The mixture was poured in water-saturated ethyl ether, then the precipitate was collected by filtration and washed with ethyl ether. The crude residue was redissolved in THF (20 mL), then 2-methylamino-4mexylamino-6-(2-aminoethylamino)-1,3,5-triazine (0.993 g, 3.46 mmol) was added and the mixture was refluxed for 18 h. The solvent was evaporated, then 1M aqueous HCl was added, then the precipitated product was collected by filtration and washed with 1M aq. HCl and H₂O until the effluent was colorless. The residue was dissolved in acetone, then CH_2Cl_2 and aq. NaHCO₃ were added. The layers were separated, the organic layer was dried over Na₂SO₄, filtered, and the volatiles were thoroughly evaporated under reduced pressure. The crude product was filtered on a short silica pad with 10% acetone/CHCl₃ as eluent to yield, after thorough drying, 1.46 g of compound 4d (2.13 mmol, 74%). T_g 72 °C; FTIR (CH₂Cl₂/KBr) 3407, 3304, 2970, 2923, 2857, 1709, 1600, 1566, 1517, 1437, 1354, 1329, 1309, 1271, 1192, 1140, 1114, 1074, 1043, 1014, 997, 911, 887, 826, 810, 752, 737 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6 , 363 K) δ 8.92 (d, ⁴J = 1.8 Hz, 1H), 8.28 (d, ³J = 9.1 Hz, ⁴J = 2.0 Hz, 1H), 8.26 (br s, 1H), 8.11 (d, ${}^{3}J=9.1$ Hz, 1H), 7.88 (d, ${}^{3}J=9.1$ Hz, 2H), 7.39 (s, 2H), 6.99 (d, ${}^{3}J=9.1$ Hz, 2H), 6.85 (br s, 1H), 6.55 (s, 1H), 6.36 (br s, 1H), 6.30 (br s, 1H), 4.24 (t, ${}^{3}J$ = 5.5 Hz, 2H), 3.77 (t, ${}^{3}J = 6.8$ Hz, 2H), 3.61 (q, ${}^{3}J = 5.8$ Hz, 2H), 3.41 (q, ${}^{3}J = 5.5$ Hz, 2H), 3.24 (q, ${}^{3}J = 5.5$ Hz, 2H), 2.84 (d, ${}^{3}J = 4.5$ Hz, 3H), 2.23 (s, 6H), 1.22 (t, ${}^{3}J = 6.8$ Hz, 3H) ppm; ${}^{13}C$ NMR (75 MHz, DMSO- d_{6}) δ 182.3. 166.5, 166.0, 164.4, 157.0, 156.5, 154.4, 144.8, 142.7, 141.0, 137.4, 134.3, 123.7, 123.0, 122.0, 119.6, 117.6, 113.1, 61.5, 49.6, 46.1, 40.4, 40.4, 27.7, 21.7, 12.5 ppm; UV-Vis (CH₂Cl₂): λ_{max} (ϵ) 539 nm (24) 000); HRMS (ESI) m/z: $[M + H]^+$ calcd. for C₃₂H₃₇N₁₂O₄S: 685.2776, found: 685.2780.

Synthesis of Azo Glass 4e

To a stirred suspension of N,N'-carbonyldiimidazole (0.757 g, 4.67 mmol) in dry DMF (3 mL) in a dry round-bottomed flask equipped with a magnetic stirrer was slowly added a solution of 2-[4-(N-(2-hydroxyethyl)-N-ethylamino)phenylazo]-5-nitrothiazole (1.00 g, 3.11 mmol) in dry DMF (7 mL) at

ambient temperature, then the mixture was stirred for 18 h under nitrogen atmosphere. The mixture was poured in water, NaCl (0.1 g) was added, and the mixture was stirred for 5 min, after which a dark blue precipitate had formed. The precipitate was collected by filtration and washed with water. The crude residue was redissolved in THF (20 mL), then 2-methylamino-4-mexylamino-6-(2-aminoethylamino)-1,3,5-triazine (1.07 g, 3.73 mmol) was added and the mixture was refluxed for 18 h. The solvent was evaporated, then 1M aqueous HCl was added, then the precipitated product was collected by filtration and washed with 1M aq. HCl and H₂O until the effluent was colorless. The residue was dissolved in acetone, then CH₂Cl₂ and aq. NaHCO₃ were added. The layers were separated, the organic layer was dried over Na₂SO₄, filtered, and the volatiles were thoroughly evaporated under reduced pressure. The crude product was redissolved in CH₂Cl₂ and filtered to remove insoluble precipitate, then the filtrate was recovered and the volatiles were thoroughly removed under reduced pressure to give 1.44 g of compound 4e (2.27 mmol, 73%). Tg 73 °C; FTIR (CH₂Cl₂/KBr) 3395, 3283, 3094, 2971, 2932, 2860, 1710, 1626, 1600, 1561, 1517, 1442, 1336, 1290, 1238, 1188, 1133, 1116, 1072, 997, 887, 839, 828, 810, 788, 735, 698, 687 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6 , 363 K) δ 8.75 (s, 1H), 8.26 (br s, 1H), 7.86 (d, ${}^{3}J$ = 8.8 Hz, 2H), 7.38 (s, 2H), 7.02 (d, ${}^{3}J$ = 9.3 Hz, 2H), 6.85 (br s, 1H), 6.56 (s, 1H), 6.36 (br s, 1H), 6.30 (br s, 1H), 4.24 (t, ${}^{3}J = 5.5$ Hz, 2H), 3.80 (t, ${}^{3}J = 5.7$ Hz, 2H), 3.64 (q, ${}^{3}J = 7.1$ Hz, 2H), 3.38 (q, ${}^{3}J = 5.5$ Hz, 2H), 3.21 (q, ${}^{3}J = 6.0$ Hz, 2H), 2.82 (d, ${}^{3}J = 4.5$ Hz, 3H), 2.23 (s, 6H), 1.23 (t, {}^{3}J = 4.5 Hz, 3H), 2.23 (s, 6H), 1.23 (t, {}^{3}J = 4.5 Hz, 3H), 2.23 (s, 6H), 1.23 (t, {}^{3}J = 4.5 Hz, 3H), 2.23 (s, 6H), 1.23 (t, {}^{3}J = 4.5 Hz, 2H), 2.23 (s, 6H), 2.23 (s, 6H 7.0 Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ 181.5, 164.0, 162.7, 162.0, 156.5, 155.5, 155.2, 145.9, 145.5, 142.6, 139.9, 137.7, 124.1, 118.1, 113.7, 61.6, 49.7, 46.3, 40.4, 40.4, 27.7, 21.6 ppm; UV-Vis (CH₂Cl₂): λ_{max} (ϵ) 571 nm (18 000); HRMS (ESI) m/z: [M + H]⁺ calcd. for C₂₈H₃₅N₁₂O₄S: 657.2439, found: 657.2444.

II. Additional data on SRG growth for compounds 1 and 4a-e

Wavelength (nm)	Irradiance (mW/cm ²)	Compound	Diffraction Efficiency (%)
488	80	1	10.2
		4a	4.2
		4b	4.3
		4 c	4.8
496.5	31	1	4.5
		4a	2.1
		4b	3.4
		4 c	5.2
514	95	1	10.1
		4a	1.4
		4b	2.8
		4 c	5.9
532	157	1	11.5
		4a	0.88
		4b	5.1
		4 c	7.1
532	344	1	10.6
		4 a	3.1
		4b	4.3
		4 c	5.6
532	521	1	6.5
		4 a	3.3
		4 b	6.3
		4 c	4.2
532	809	4d	0.83
		4e	0.055
532	1509	4d	0.20
		4e	0.0090
632	76	1	8.6
		4 c	6.3

Table S1. Final diffraction efficiencies for SRG of compounds 1 and 4a-e. Wavelengths and irradiances used are indicated.

S6

III. NMR spectra of compounds 4a-e

S/ 5"#91~~
666 591
PCP.001
V 3 V 7 7 L

124'436	
LES 951-	
1007.51	2

S85.751	_
	_

\$70.511	
6107/11	
585.611~	
920.221	
123.041	
	_

200

\$99"72------

141.94-----125.64------

642.19------

12.513

