Electricatic Supplementary Material (ESI) for New Journal of Chemistry.

Supplementary Materials

Magnetic porous chitosan-based palladium catalyst: A green, highly efficient and reusable catalyst for Mizoroki-Heck reaction in aqueous media

Barahman Movassagh,* Nasrin Rezaei

Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran

		Page								
1.	Experin	2								
	1.1.	General	2							
	1.2.	Preparation of PCS-TI (1) and its characterizations	2							
	1.3.	Preparation of PCS-TI/Pd (2) and its characterizations	6							
	1.4.	Preparation of MPCS-TI/Pd (3) and its characterizations	9							
	1.5.	General procedure for Mizoroki-Heck coupling reaction	21							
2.	Spectra	l data for Table 2	22							
3.	3. Copy of ¹ H- and ¹³ C-NMR spectra of Mizoroki-Heck products									
4.	Refrenc	ce	37							

1. Experimental Procedure

1.1. General

As received chitosan (CS) powder with average MW = 100000-300000 and the deacetvlation degree of 70-85% (from Acros company) was used without further purification. All chemicals were commercial reagent grades and purchased from Merck and Aldrich. Polyethylene glycol (PEG, MW = 10000) was purchased from Aldrich. Thermogravimetric-diffraction thermal analysis (TG-DTA) was carried out using a thermal gravimetric analysis instrument (NETZSCH TG 209 F1 Iris) with a heating rate of 10 °C min⁻¹. XRD patterns were recorded by an EQUINOX 3000, X-ray diffractometer using Cu Ka radiation. XPS (X-Ray photoelectron spectroscopy) data was recorded with 8025-BesTec twin anode XR3E2 X-ray source system. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded using a Bruker AQS-300 Avance spectrometer. Transmission electron microscope, TEM (Zeiss - EM10C - 80 KV) was used to obtain TEM images. The scanning electron microscopy (SEM) images were obtained using a scanning electron microscope MIRA3\\TESCAN-LMU. The magnetic measurement of samples were carried out in a vibrating sample magnetometer (VSM) (4 inch, Daghigh Meghnatis Kashan Co., Kashan, Iran) at room temperature. FT-IR spectra were obtained using a Shimadzu model FT-IR 8400 instrument. The Pd content of the complex was determined using inductively coupled plasma (ICP, Varian vista-mpx), and surface morphology of the catalyst was analyzed using Energy-dispersive-X-ray (MIRA3, TESCAN-LMU) equipped with EDX facility. Micro analytical data was collected by a Perkin-Elmer, USA, 2400C elemental analyzer. The N₂-sorption was carried out in a Belsorp-mini-BEL Japan, Inc. at 298 K.

1.2. Preparation of porous chitosan-thienyl imine support, PCS-TI (1) and its characterization

In a 200 mL round-bottom flask equipped with a magnetic stirring bar, chitosan (1 g) was allowed to dissolve slowly in aqueous acetic acid solution (0.87 M, 100 mL), for 1 h at room temperature; then PEG (1 g) was added to the above flask and stirred for 10 min, followed by addition of 2-thiophenecarbaldehyde (2.24 g, 20 mmol) and the mixture was stirred for 24 h under N₂ atmosphere. The reaction mixture was dripped into a 1 N NaOH aqueous solution (250 mL) through a needle of 0.9 mm diameter. The gelatine like CS-TI was collected and washed with hot distilled water until neutral (pH ~ 7), followed by extraction of the PEG component with about 2 liters of hot water (Scheme 1). Similarly, the bead chitosan-supported ligand (BCS-TI) was prepared by the same protocol in the absence of PEG. Also, the normal chitosan-supported ligand (NCS-TI) was produced by mixing chitosan and 2-thiophenecarbaldehyde in EtOH (10 mL).

Figure S1. IR (KBr disc) spectrum of chitosan.

Figure S3. SEM image of NCS-TI.

Figure S4. SEM image of PCS-TI (1).

IDFix report

Quantitative Results

Elt	LiLne	Int	Error	К	Kr	W%	A%	ZAF	Formula	Ox%	Pk/Bg	Class	LConf	HConf	Cat#
С	Ka	194.8	21.9233	0.4983	0.2071	41.35	59.01	0.4891		0.00	78.09	A	41.45	43.25	0.00
N	Ka	8.6	21.9233	0.0296	0.0123	7.60	9.18	0.1620		0.00	5.20	A	6.83	8.37	0.00
0	Ka	121.3	21.9233	0.1546	0.0642	26.06	28.02	0.2374		0.00	37.02	A	26.33	27.79	0.00
S	Ka	39.4	1.4186	0.0236	0.0098	3.17	1.92	0.8365		0.00	4.33	A	1.12	1.23	0.00
Au	La	5.9	0.4941	0.2939	0.1222	21.81	1.87	0.5599		0.00	3.48	В	19.15	24.48	0.00
				1.0000	0.4156	100.00	100.00			0.00					0.00

Figure S5. EDX spectrum of PCS-TI (1).

Figure S6. Powder XRD pattern of PCS-TI (1).

1.3. Preparation and characterization of porous chitosan-thienyl imine Pd complex,

PCS-TI/Pd (2)

In a 50 mL round-bottom flask, PdCl₂ (0.088 g, 0.5 mmol) was added to PCS-TI (1) in EtOH (30 mL). The mixture was heated at reflux for 24 h. The product formed was filtered off, washed with EtOH and finally dried in vacuum for 24 h at 50 °C (Scheme 1). Similarly, the bead and normal chitosan-thienyl Pd complexes (BCS-TI/Pd and NCS-TI/Pd) were prepared by the same protocol.

Figure S8. SEM image of PCS-TI/Pd (2).

Figure S9. SEM image of PCS-TI/Pd (**2**) (distribution of palladium).

IDFix report

Quantitative Results

Elt	Line	Int	Error	К	Kr	W%	A%	ZAF	Formula	Ox%	Pk/Bg	Class	LConf	HConf	Cat#
с	Ка	197.6	29.0647	0.4367	0.1679	39.37	54.29	0.4212		0.00	119.85	A	39.03	40.72	0.00
N	Ка	13.2	29.0647	0.0393	0.0151	8.92	10.58	0.1523		0.00	7.25	А	9.11	10.74	0.00
0	Ka	146.3	29.0647	0.1611	0.0620	29.09	30.15	0.2100		0.00	53.19	A	28.77	30.22	0.00
s	Ка	11.9	0.8547	0.0062	0.0024	2.27	1.14	0.8706		0.00	3.94	В	0.25	0.30	0.00
CI	Ka	163.2	0.8547	0.0935	0.0359	4.28	1.98	0.8391		0.00	13.11	A	4.18	4.38	0.00
Pd	La	107.7	0.8547	0.1397	0.0537	7.35	1.13	0.7307		0.00	11.44	A	7.14	7.57	0.00
Au	La	2.9	0.3529	0.1236	0.0475	8.80	0.73	0.5403		0.00	2.63	В	7.26	10.34	0.00
				1.0000	0.3846	100.00	100.00			0.00	120101121-5				0.00

Figure S10. EDX spectrum of PCS-TI/Pd (2).

Figure S11. Powder XRD pattern of PCS-TI/Pd (2).

1.4. Preparation and characterization of cross-linked magnetic porous chitosan-thienyl imine Pd complex MPCS-TI/Pd (3)

PCS-TI/Pd (2) was added to aqueous acetic acid solution (0.17 M, 30 mL); a suspension of Fe_3O_4 (0.5 g) in glyoxal (3 mL) and EtOH (5 mL) was then added dropwise to the above mixture. More glyoxal (1.5 mL) was added and the reaction mixture was mechanically stirred for 1 h at room temperature. The product formed was collected, washed with water, ethanol, and then dried in vacuum at 50 °C for 24 h (Scheme 1). Similarly, magnetic bead and normal catalysts (MBCS-TI/Pd, MNCS-TI/Pd) were prepared by the same protocol.

Figure S12. IR (KBr) spectrum of MPCS-TI/Pd (3).

Figure S13. SEM image of MPCS-TI/Pd (3).

Figure S14. SEM image of MPCS-TI/Pd (3) (distribution of nanoparticles).

Figure S15. TEM image of MPCS-TI/Pd (3) before reaction.

Figure S16. TEM image of MPCS-TI/Pd (3) after eight reaction runs.

IDFix report

Quantitative Results

Elt	Line	Int	Error	К	Kr	W%	A%	ZAF	Formula	Ox%	Pk/Bg	Class	LConf	HConf	Cat#
С	Ка	114.7	11.9980	0.3065	0.1312	34.50	51.48	0.3780		0.00	75.47	A	33.73	35.66	0.00
N	Ka	8.6	11.9980	0.0309	0.0132	6.99	9.16	0.1655		0.00	5.41	A	7.17	8.80	0.00
0	Ka	111.8	11.9980	0.1488	0.0637	27.73	30.90	0.2296		0.00	37.07	A	26.95	28.52	0.00
S	Ka	6.2	1.2195	0.0039	0.0017	2.19	1.10	0.8761		0.00	3.43	В	0.17	0.21	0.00
CI	Ka	136.2	1.2195	0.0943	0.0404	4.73	2.38	0.8534		0.00	11.60	A	4.61	4.85	0.00
Fe	Ka	75.1	0.5351	0.1738	0.0744	9.02	2.88	0.8252		0.00	10.61	A	8.71	9.33	0.00
Pd	La	98.4	1.2195	0.1543	0.0660	8.87	1.49	0.7440		0.00	10.81	A	8.61	9.14	0.00
Au	La	1.7	0.2885	0.0876	0.0375	6.78	0.61	0.5533		0.00	2.29	В	5.22	8.33	0.00
				1.0000	0.4280	100.00	100.00			0.00					0.00

Figure S17. EDX spectrum of MPCS-TI/Pd (3).

Figure S18. Powder XRD pattern of MPCS-TI/Pd (3).

Figure S19. XPS spectrum of the MPCS-TI/Pd (3), before reaction.

Figure S20. XPS spectrum of the MPCS-TI/Pd (3), after reaction.

Figure S21. VSM curve for the magnetic Fe₃O₄ nanoparticles.

Figure S22. VSM curve for the magnetic MPCS-TI/Pd (3).

Figure S23. BET diagram of MPCS-TI/Pd (3).

Figure S24. N₂ adsorption-desorption isotherm of MPCS-TI/Pd (3).

Figure S25. BJH diagram of MPCS-TI/Pd (3).

Figure S26. DH diagram of MPCS-TI/Pd (3).

Figure S27. TG and DTA curves of MPCS-TI/Pd (3).

1.5. General procedure for Mizoroki-Heck coupling reaction

A mixture of aryl halide (1.0 mmol), alkene (1.3 mmol), triethylamine (2 mmol), TBAB (0.5 mmol) H_2O/DMF (v/v = 2:1, 3 mL), and the catalyst (0.001 mmol, 0.1 mol% Pd) was stirred at 110 °C for an appropriate time under aerial condition. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature, poured into H_2O (10 mL), and the catalyst was separated by magnetic decantation. In the case of acrylic acid, aqueous solution of Na₂CO₃ (10 mL, 3% w/v) was added; after separation of the catalyst, 1 N aq. HCl (5 mL) was added, and the product was extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed with brine (2 × 10 mL), dried (MgSO₄), and concentrated in vacuum. The crude product was further purified by preparative TLC (silica gel) using *n*-hexane–EtOAc (9:1) to afford the desired product.

2. Spectral data for Table 2

(E)-4-Acetylstilbene (Table 2, 6b)¹

Pale-yellow solid; mp141–143°C; IR (KBr): $\upsilon = 1678.4 \text{ cm}^{-1}$; ¹HNMR (300 MHz,CDCl₃): $\delta = 7.97$ (d, J = 8.3Hz,2 H), 7.60 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 7.5 Hz, 2 H), 7.39 (t, J = 7.1 Hz, 2H), 7.31– 7.33 (m, 1H), 7.24 (d, J = 14.3 Hz, 1H), 7.14 (d, J = 16.3 Hz, 1H), 2.62 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.5$, 142.0, 136.7, 135.9, 131.4, 128.9, 128.8, 128.3, 127.4, 126.8, 126.5, 26.6.

(E)-4-Cyanostilbene (Table 2, 6c)¹

White solid; mp 116-118 °C; IR (KBr): $v = 2231.9 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.53-7.66$ (m, 6H), 7.27-7.43 (m, 3H), 7.23 (d, J = 16.4 Hz, 1H), 7.09 (d, J = 16.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 141.8$, 136.3, 132.5, 132.4, 128.9, 128.7, 126.94, 126.9, 126.7, 119.1, 110.6.

(E)-4-Formylstilbene (Table 2, 6d)²

Pale-yellow solid; mp113–116 °C; IR (KBr): $v = 1700.2 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = 10.0$ (s, 1H), 7.88 (d, J = 7.8 Hz, 2H), 7.66 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 7.2 Hz, 2H), 7.31-7.42 (m, 22

3H), 7.28 (d, J = 16.3 Hz, 1H), 7.15 (d, J = 16.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 191.7$, 143.4, 136.5, 135.3, 132.2, 130.3, 128.9, 128.5, 127.3, 126.9.

(E)-4-Methoxystilbene (Table 2, 6f)³

White solid; mp 134–136 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.45-7.52$ (m, 4H), 7.36 (t, J = 7.7 Hz, 2H),), 7.22-7.28 (m, 1H), 7.09 (d, J = 16.3 Hz, 1H), 6.99 (d, J = 16.3 Hz, 1H), 6.89-6.94 (m, 2H), 3.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 159.3$, 137.6, 130.1, 128.8, 128.2, 127.7, 127.2, 126.6, 126.3, 114.1, 55.3.

Cinnamic acid (Table 2, 6k)⁴

White solid; IR (KBr): v = 2963.1, 1697.9 cm⁻¹; m.p. 131-133 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 11.53$ (s, 1H), 7.82 (d, J = 16.0 Hz, 1H), 7.54-7.59 (m, 2H), 7.41-7.45 (m, 3H), 6.48 (d, J = 16.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 172.5$, 147.1, 134.0, 130.8, 128.97, 128.4, 117.3.

(E)-4-Methoxycinnamic acid (Table 2, 6l)⁴

White solid; m.p. 171-174 °C; IR (KBr): v = 2938.2, 1686.5 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 11.60$ (s, 1H), 7.76 (d, J = 15.9 Hz, 1H), 7.52 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H) 6.33 (d, J = 15.9 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 172.3$, 161.7, 146.7, 130.1, 126.8, 114.6, 114.4, 55.4.

(E)-Methyl 3-p-tolylacrylate (Table 2, 6n)⁵

White solid; m.p. 56-58 °C; IR (KBr): $v = 1711.5 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.68 \text{ (d, } J = 16.0 \text{ Hz}, 1\text{H})$, 7.42 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H), 3.80 (s, 3H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 167.6$, 144.8, 140.7, 131.7, 129.6, 128.1, 116.7, 51.6, 21.4.

(E)-Methyl 2-methyl-3-phenylacrylate (Table 2, 6p)⁶

Light yellow oil; IR (KBr): $v = 1714.4 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.71$ (s, 1H), 7.41 (d, J = 4.2 Hz, 2H), 7.28-7.37 (m, 3H), 3.84 (s, 3H), 2.14 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 169.2$, 135.9, 130.7, 129.6, 129.2, 128.5, 128.4, 52.1, 14.1.

(E)-Ethyl 3-(naphthalen-5-yl)acrylate (Table 2, 6q)⁶

Light yellow oil; IR (KBr): $v = 1711.4 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.56$ (d, J = 15.8 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 7.86-7.90 (m, 2H); 7.75 (d, J = 7.2 Hz, 1H),), 7.45-7.61 (m, 3H), 6.55 (d, J = 15.8 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.9$, 141.6, 133.7, 131.8, 131.4, 130.5, 128.7, 126.8, 126.2, 125.5, 124.99, 123.4, 120.9, 60.6, 14.4.

(E)-Cinnamonitrile (Table 2, 6r)²

Light yellow oil; IR (neat): $v = 2217.7 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.81-7.83$ (m, 1H), 7.43-7.44 (m, 4H), 7.39 (d, J = 16.9 Hz, 1H), 5.88 (d, J = 16.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 150.6$, 131.2, 129.1, 128.9, 127.4, 118.2, 96.3.

(E)-Cinnamamide (Table 2, 6s)²

Pale-yellow solid; mp 147–149 °C; IR (KBr): v = 3575.4, 3170.9, 1662.4 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.64$ (d, J = 15.7 Hz, 1H), 7.49 (s, 2H), 7.36 (s, 3H), 6.49 (d, J = 15.7 Hz, 1H), 6.15 (brs, 1H), 5.97 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 168.0$, 142.4, 134.5, 129.9, 128.8, 127.9, 119.6.

Electronic Supplementary Material (ESI) for RSC Advances This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

References

- 1. R. J. Kalbasi and M. Negahdari, J. Mol. Struct., 2014, 1063, 259-268.
- 2. B. Movassagh, S. Yasham and M. Navidi, Synlett, 2013, 2671-2674.
- 3. P. Karthikeyan, P. N. Muskawar, S. A. Aswar, P. R. Bhagat and S. K. Sythana, *J. Mol. Catal. A: Chem.*, 2012, **358**, 112–120.
- 4. Y. C. Cui and L. Zhang, J. Mol. Catal. A: Chem., 2005, 237, 120-125.
- 5. K. Karami, Z. K. Moghadam and M. Hosseini-Kharat, Catal. Commun., 2014, 43, 25-28.
- 6. A. R. Hajipour, F. Rafiee and A. E. Rouho, *Tetrahedron Lett.*, 2011, **52**, 4782–4787.