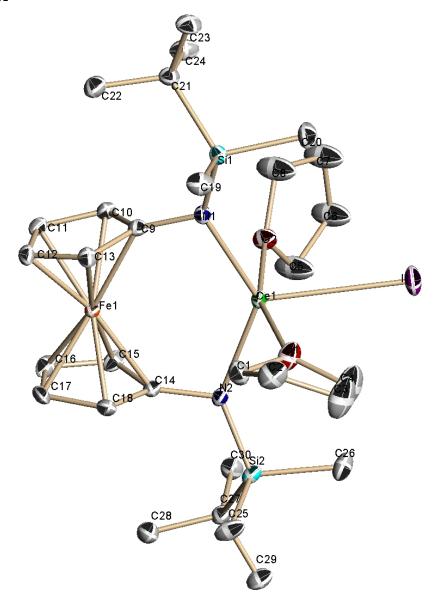
Supporting Information for

In situ Synthesis of Lanthanide Complexes Supported

by a Ferrocene Diamide Ligand: Extension to Redox-Active


Lanthanide Ions

Wenliang Huang, Jonathan L. Brosmer, and Paula L. Diaconescu*

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA 90095

Table of Contents

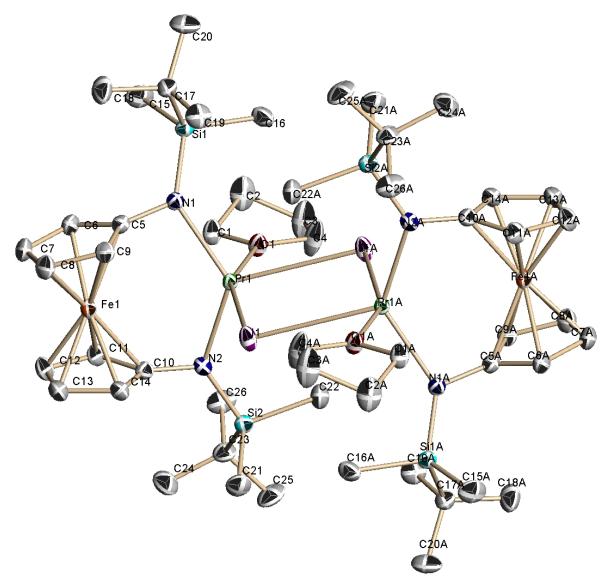

$(NN^{TBS})CeI(THF)_2$

Figure S1. Thermal-ellipsoid (50% probability) representation of one of the two crystallographically independent molecules of (NN^{TBS})CeI(THF)₂. Hydrogen atoms were omitted for clarity.

Crystal data for $C_{30}H_{54}IFeCeO_2N_2Si_2$; $M_r = 853.80$; triclinic; space group P-1; a = 11.347(3) Å; b = 11.360(3) Å; c = 16.303(7) Å; $\alpha = 99.150(5)^\circ$; $\beta = 93.557(5)^\circ$; $\gamma = 118.858(3)^\circ$; V = 1793.7(11) Å³; Z = 2; T = 100(2) K; $\lambda = 0.71073$ Å; $\mu = 2.612$ mm⁻¹; $d_{calc} = 1.581$ g·cm⁻³; 25177 reflections collected; 10133 unique ($R_{int} = 0.0242$); giving $R_1 = 0.0330$ for 8971 data with [I>2 σ (I)] and $R_1 = 0.0380$, w $R_2 = 0.0790$ for all 10133 data. Residual electron density (e^- ·Å⁻³) max/min: 1.85/-1.86.

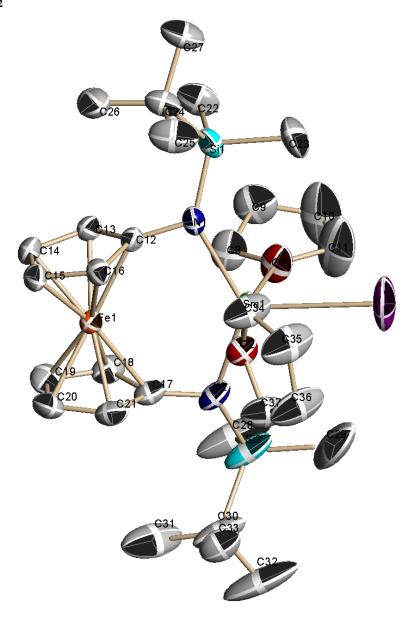

$[(NN^{TBS})Pr(THF)(\mu-I)]_2$

Figure S2. Thermal-ellipsoid (50% probability) representation of $[(NN^{TBS})Pr(THF)(\mu-I)]_2$. Hydrogen atoms were omitted for clarity.

Crystal data for $C_{52}H_{92}Fe_2I_2N_4O_2Si_4Pr_2$; $M_r = 1564.98$; monoclinic; space group P21/n; a = 14.879(4) Å; b = 13.738(4) Å; c = 15.468(4) Å; $\alpha = 90^\circ$; $\beta = 91.074(3)^\circ$; $\gamma = 90^\circ$; V = 3161.3(15) Å³; Z = 2; T = 100(2) K; $\lambda = 0.71073$ Å; $\mu = 3.054$ mm⁻¹; $d_{calc} = 1.644$ g·cm⁻³; 43971 reflections collected; 9270 unique ($R_{int} = 0.0283$); giving $R_1 = 0.0226$ for 8022 data with [I>2 σ (I)] and $R_1 = 0.0299$, w $R_2 = 0.0520$ for all 9270 data. Residual electron density (e^- ·Å⁻³) max/min: 0.78/-0.70.

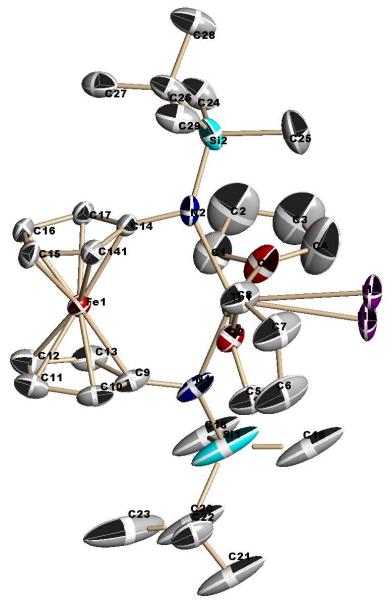

(NN^{TBS})SmI(THF)₂

Figure S3. Thermal-ellipsoid (50% probability) representation of (NN^{TBS})SmI(THF)₂. Hydrogen atoms were omitted for clarity.

Crystal data for $C_{60}H_{108}Fe_2I_2N_4O_2Si_4Sm_2$; $M_r = 1728.06$; triclinic; space group P-1; a = 11.2530(13) Å; b = 11.6706(13) Å; c = 16.3205(19) Å; $\alpha = 101.063(1)^\circ$; $\beta = 92.506(1)^\circ$; $\gamma = 118.408(1)^\circ$; V = 1827.5(4) ų; Z = 1; T = 100(2) K; $\lambda = 0.71073$ Å; $\mu = 2.925$ mm⁻¹; $d_{calc} = 1.570$ g·cm⁻³; 25436 reflections collected; 10243 unique ($R_{int} = 0.0175$); giving $R_1 = 0.0371$ for 8822 data with [I>2 σ (I)] and $R_1 = 0.0443$, w $R_2 = 0.0854$ for all 10243 data. Residual electron density (e⁻·Å⁻³) max/min: 1.62/-2.95.

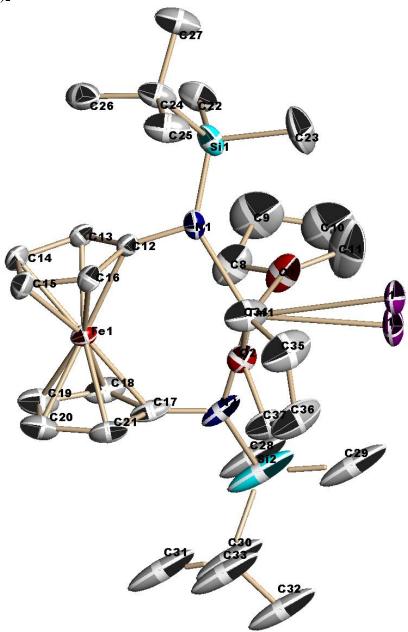

$(NN^{TBS})TbI(THF)_2$

Figure S4. Thermal-ellipsoid (50% probability) representation of (NN^{TBS})TbI(THF)₂. Hydrogen atoms were omitted for clarity.

Crystal data for C₃₀H₅₄IFeTbO₂N₂Si₂; M_r = 872.60; triclinic; space group P-1; a = 11.130(4) Å; b = 11.608(5) Å; c = 16.122(9) Å; α = 101.564(6)°; β = 91.881(6)°; γ = 118.404(4)°; V = 1775.0(14) Å³; Z = 2; T = 100(2) K; λ = 0.71073 Å; μ = 3.349 mm⁻¹; d_{calc} = 1.633 g·cm⁻³; 24683 reflections collected; 9991 unique (R_{int} = 0.0309); giving R₁ = 0.0589 for 7766 data with [I>2 σ (I)] and R₁ = 0.0791, wR₂ = 0.1467 for all 9991 data. Residual electron density (e⁻·Å⁻³) max/min: 3.07/-5.08.

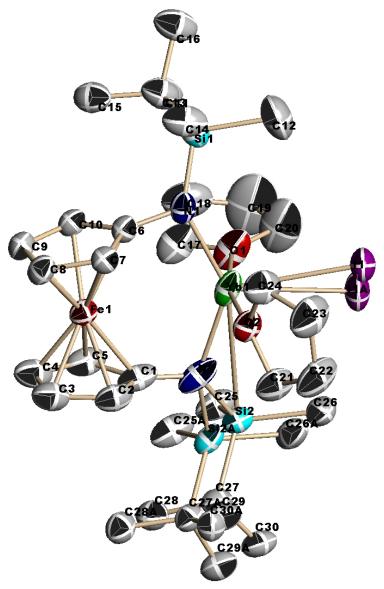

$(NN^{TBS})TmI(THF)_2$

Figure S5. Thermal-ellipsoid (50% probability) representation of (NN^{TBS})TmI(THF)₂. Hydrogen atoms were omitted for clarity.

Crystal data for C₃₀H₅₄IFeTmO₂N₂Si₂; M_r = 882.61; triclinic; space group P-1; a = 11.140(3) Å; b = 11.605(3) Å; c = 16.073(7) Å; $\alpha = 101.474(5)^{\circ}$; $\beta = 92.374(5)^{\circ}$; $\gamma = 118.292(3)^{\circ}$; V = 1770.9(10) Å³; Z = 2; T = 100(2) K; $\lambda = 0.71073$ Å; $\mu = 3.865$ mm⁻¹; d_{calc} = 1.655 g·cm⁻³; 24486 reflections collected; 9915 unique (R_{int} = 0.0242); giving R₁ = 0.0609 for 8240 data with [I>2 σ (I)] and R₁ = 0.0741, wR₂ = 0.1399 for all 9915 data. Residual electron density (e⁻·Å⁻³) max/min: 3.95/-6.27.

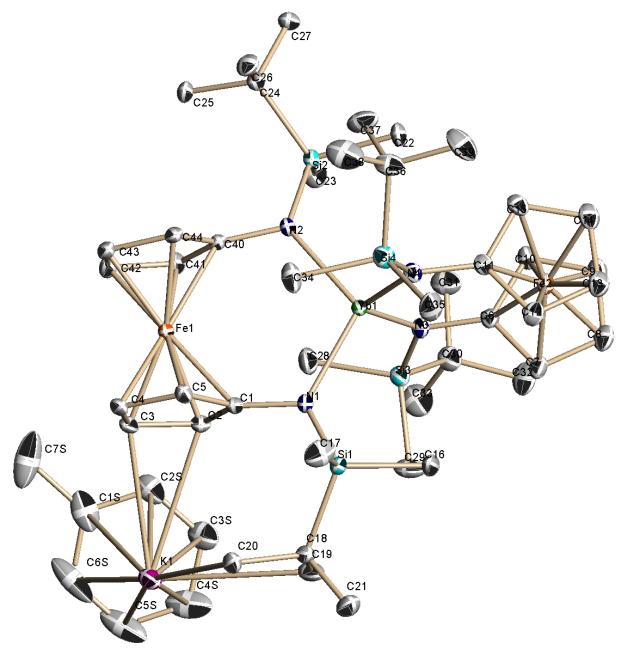

(NN^{TBS})YbI(THF)₂

Figure S6. Thermal-ellipsoid (50% probability) representation of (NN^{TBS})YbI(THF)₂. Hydrogen atoms were omitted for clarity.

Crystal data for $C_{30}H_{54}IFeYbO_2N_2Si_2$; $M_r = 886.72$; triclinic; space group P-1; a = 11.5979(17) Å; b = 11.6945(17) Å; c = 16.109(2) Å; $\alpha = 76.069(2)^\circ$; $\beta = 78.510(2)^\circ$; $\gamma = 56.888(2)^\circ$; V = 1770.1(4) Å³; Z = 2; T = 100(2) K; $\lambda = 0.71073$ Å; $\mu = 4.002$ mm⁻¹; $d_{calc} = 1.664$ g·cm⁻³; 15984 reflections collected; crystal was a two component twin and refined, BASF was 0.48. B-level alert PLAT_ALERT_1_B and 4_B should be ignored as data was not merged due to twinning. C19 and C18 are THF carbons with some disorder; giving $R_1 = 0.0420$ for 13789 data with [I>2 σ (I)] and $R_1 = 0.0478$, w $R_2 = 0.1074$ for all 15982 data. Residual electron density (e⁻·Å⁻³) max/min: 3.24/-4.73.

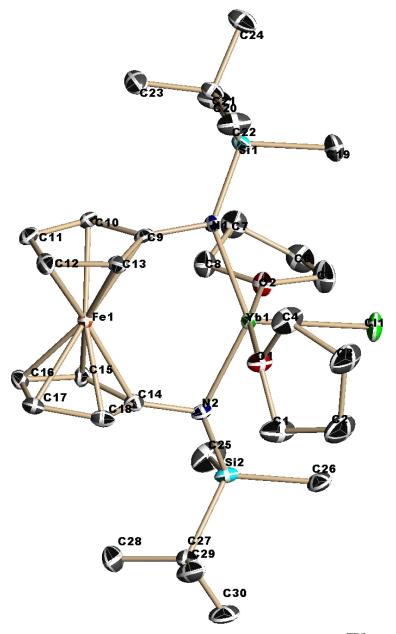

$[K(toluene)][(NN^{TBS})_2Yb]$

Figure S7. Thermal-ellipsoid (50% probability) representation of $[K(toluene)][(NN^{TBS})_2Yb]$. Hydrogen atoms were omitted for clarity.

Crystal data for $C_{51}H_{84}KFe_2YbN_4Si_4$; $M_r = 1189.42$; orthorhombic; space group P212121; a = 13.541(2) Å; b = 19.611(3) Å; c = 20.563(3) Å; V = 5460.6(15) Å³; Z = 4; T = 100(2) K; $\lambda = 0.71073$ Å; $\mu = 2.424$ mm⁻¹; $d_{calc} = 1.447$ g·cm⁻³; 76900 reflections collected; 16119 unique ($R_{int} = 0.0417$); giving $R_1 = 0.0298$ for 14904 data with [I>2 σ (I)] and $R_1 = 0.0310$, w $R_2 = 0.0761$ for all 16119 data. Residual electron density (e^- ·Å⁻³) max/min: 2.56/-1.45.

$(NN^{TBS})YbCl(THF)_2$

Figure S8. Thermal-ellipsoid (50% probability) representation of (NN^{TBS})YbCl(THF)₂. Hydrogen atoms were omitted for clarity.

Crystal data for C₃₀H₅₄ClFeYbO₂N₂Si₂; $M_r = 795.27$; triclinic; space group P-1; a = 10.605(4) Å; b = 11.350(4) Å; c = 16.204(6) Å; $\alpha = 100.677(4)^\circ$; $\beta = 94.486(4)^\circ$; $\gamma = 114.277(4)^\circ$; V = 1721.0(10) Å³; Z = 2; T = 100(2) K; $\lambda = 0.71073$ Å; $\mu = 3.297$ mm⁻¹; $d_{calc} = 1.535$ g·cm⁻³; 22731 reflections collected; 6916 unique ($R_{int} = 0.0309$); giving $R_1 = 0.0347$ for 6277 data with [I>2 σ (I)] and $R_1 = 0.0380$, wR₂ = 0.0945 for all 6916 data. Residual electron density ($e^-\cdot$ Å⁻³) max/min: 3.03/-1.01.