Supplementary Material to the Paper

Oxidation of 3,5-di-*tert*-butylcatechol and 2-aminophenol by molecular oxygen catalyzed by an organocatalyst[†]

Gábor Székely, Nárcisz Bagi, József Kaizer* and Gábor Speier*

List of content: Page SFigure 1. The catalytic oxidation of OAPH₃ followed by UV-vis spectroscopy S2 SFigure 2. Plot of oxidation of DTBCH₂ versus dioxygen concentration S3 SFigure 3. Plot of oxidation of OAPH₃ versus dioxygen concentration **S**4 SFigure 4. The dependence of reaction rate of the oxidation of DTBCH₂ on the catalyst concentration S5 SFigure 5. The dependence of reaction rate of the oxidation of OAPH₃ on the catalyst concentration **S6** SFigure 6. Time course of the oxidation of OAPH₃ **S**7 SFigure 7. Rate dependence of the oxidation of DTBCH₂ on the initial concentration of DTBCH₂ **S**8 SFigure 8. Rate dependence of the oxidation of OAPH₃ on the initial concentration of OAPH₃ S9 SFigure 9. The Arrhenius plot on the oxidation of DTBCH₂ S10 SFigure 10. The Arrhenius plot on the oxidation of OAPH₃ S11 SFigure 11. The Kinetic Isotope Effect of DTBCH₂ S12 SFigure 12. The Kinetic Isotope Effect of OAPH₃ S13 **STable 1.** The kinetic data of the catalytic oxidation of DTBCH₂ S14 **STable 2.** The kinetic data of the catalytic oxidation of OAPH₃ S15 **Experiments details** S16 SFigure 13. ¹H NMR spectrum of 3,5-di-*tert*-butylquinone. S17 SFigure 14. ¹³C NMR spectrum of 3,5-di-tert-butylquinone. S18 SFigure 15. ¹H NMR spectrum of 2-aminophenoxazin-3-one. S19 SFigure 16. ¹³C NMR spectrum of 2-aminophenoxazin-3-one. S20 SFigure 17. Mass spectrum of 3,5-di-tert-butylquinone. S21 SFigure 18. Mass spectrum of 2-aminophenoxazine-3-one. S22

SFigure 1. The catalytic oxidation of OAPH₃ followed by UV-vis spectroscopy. $[OAPH_3] = 11.25 \times 10^{-2} \text{ M}, [1,3,2\text{-}oxazaphosphole] = 1.25 \times 10^{-3} \text{ M}, [O_2] = 9.5 \times 10^{-3} \text{ M}, T = 298.15 \text{ K}, 20 \text{ mL MeOH}.$

SFigure 2. Plot of oxidation of DTBCH₂ versus dioxygen concentration. [DTBCH₂] = 12.5×10^{-2} M, [1,3,2-oxazaphosphole] = 1.25×10^{-3} M, T = 298.15 K, 10 mL MeOH.

SFigure 3. Plot of oxidation of OAPH₃ versus dioxygen concentration. $[OAPH_3] = 12.5 \times 10^{-2} \text{ M}, [1,3,2\text{-}oxazaphosphole] = 1.25 \times 10^{-3} \text{ M}, T = 298.15 \text{ K}, 20 \text{ mL MeOH}.$

SFigure 4. The dependence of reaction rate of the oxidation of DTBCH₂ on the catalyst concentration. $[DTBCH_2] = 12.5 \times 10^{-2} \text{ M}, [O_2] = 9.5 \times 10^{-3} \text{ M}, T = 298.15 \text{ K}, 10 \text{ mL MeOH}.$

SFigure 5. The dependence of reaction rate of the oxidation of OAPH₃ on the catalyst concentration. $[OAPH_3] = 12.5 \times 10^{-2} \text{ M}, [O_2] = 9.5 \times 10^{-3} \text{ M}, \text{ T} = 298.15 \text{ K}, 20 \text{ mL}$ MeOH.

SFigure 6. Time course of the oxidation of OAPH₃. [OAPH₃] = 12.5×10^{-2} M, [1,3,2-oxazaphosphole] = 1.25×10^{-3} , [O₂] = 9.5×10^{-3} M, T = 298.15 K, 20 mL MeOH.

SFigure 7. Rate dependence of the oxidation of DTBCH₂ on the initial concentration of DTBCH₂. [1,3,2-oxazaphosphole] = 1.25×10^{-3} M, [O₂] = 9.5×10^{-3} M, T = 298.15 K,10 mL MeOH.

SFigure 8. Rate dependence of the oxidation of OAPH₃ on the initial concentration of OAPH₃. [1,3,2-oxazaphosphole] = 1.25×10^{-3} M, [O₂] = 9.5×10^{-3} M, T = 298.15 K,20 mL MeOH.

SFigure 9. The Arrhenius plot on the oxidation of DTBCH₂.

SFigure 10. The Arrhenius plot on the oxidation of OAPH₃.

SFigure 11. The Kinetic Isotope Effect data of DTBCH₂.

(■ in MeOH, ● in MeOD)

 $[DTBCH_2] = 12.5 \times 10^{-2} \text{ M}, [1,3,2\text{-}oxazaphosphole] = 1.25 \times 10^{-3}, [O_2] = 9.5 \times 10^{-3} \text{ M}, T = 298.15 \text{ K}, 10 \text{ mL MeOD/MeOH}.$

SFigure 12. The Kinetic Isotope Effect data of OAPH₃.

(■ in MeOH, ● in MeOD)

 $[OAPH_3] = 12.5 \times 10^{-2} \text{ M}, [1,3,2\text{-}oxazaphosphole] = 1.25 \times 10^{-3}, [O_2] = 9.5 \times 10^{-3} \text{ M}, T = 298.15 \text{ K}, 20 \text{ mL MeOD/MeOH}.$

Entry	Temp.	[O ₂]	[1,3,2- oxazaphosphole]	[DTBCH ₂]	-d[DTBCH ₂]/dt	k _{obs}
	(°C)	(10 ⁻³ mol dm ⁻³)	(10 ⁻³ mol dm ⁻³)	(10 ⁻² mol dm ⁻³)	(10 ⁻⁷ Ms ⁻¹)	(M ⁻² s ⁻¹)
1.	25	9.50	1.25	5.00	5.02 ± 0.30	0.84±0.08
2.	25	9.50	1.25	7.50	6.41 ± 0.17	0.71±0.09
3.	25	9.50	1.25	10.00	8.49 ± 0.03	0.70±0.09
4.	25	9.50	1.25	12.50	10.69 ±0.24	0.71±0.09
5.	25	9.50	0.625	12.50	5.25 ± 0.27	0.70±0.09
6.	25	9.50	2.500	12.50	20.80 ± 0.24	0.69±0.09
7. *	25	1.92	1.25	12.50	3.08 ± 0.12	1.03±0.10
8.	25	4.80	1.25	12.50	5.52 ± 0.25	0.74±0.09
						avg.:0.76±0.11
9.	30	9.48	1.25	12.50	14.20 ± 0.57	0.96±0.10
10.	35	9.46	1.25	12.50	16.40 ± 0.78	1.11±0.11
11.	40	9.44	1.25	12.50	19.32 ± 1.07	1.31±0.11
12.	45	9.42	1.25	12.50	24.40 ± 1.55	1.79±0.11
13.	25	9.50	1.25	12.50	10.20 ± 0.22	0.69±0.09

STable 1. The kinetic data of the catalytic oxidation of DTBCH₂.

Mean value of the kinetic constant k_{obs} and its standard deviations $\sigma(k_{obs})$ were calculated as

kobs = $(\sum_{i} w_i k_i / \sum_{i} w_i)$ and $\sigma(k_{obs}) = (\sum_{i} w_i (k_i - k_2)^2 / (n-1) \sum_{i} w_i)^{1/2}$, where $w_i = 1/\sigma_i^2$

* Under air

13. in MeOD

Entry	Temp.	[O ₂]	[1,3,2- oxazaphosphole]	[OAPH ₃]	d[OAPH ₃]/d <i>t</i>	k _{obs}
	(°C)	(10 ⁻³ mol dm ⁻³)	(10 ⁻³ mol dm ⁻³)	(10 ⁻² mol dm ⁻³)	(10 ⁻⁷ Ms ⁻¹)	(M ⁻² s ⁻¹)
1.	25	9.50	1.25	5.00	3.73 ± 0.25	0.61±0.03
2.	25	9.50	1.25	7.50	5.85 ± 0.18	0.63±0.03
3.	25	9.50	1.25	10.00	7.56 ± 0.12	0.62±0.03
4.	25	9.50	1.25	12.50	9.56 ± 0.10	0.62±0.03
5.	25	9.50	0.63	12.50	4.26 ± 0.23	0.55±0.03
6.	25	9.50	2.50	12.50	20.90 ± 0.35	0.68±0.04
7.	25	9.50	3.75	12.50	29.70 ± 0.65	0.65±0.04
8. *	25	1.92	1.25	12.50	2.00 ± 0.32	0.65±0.04
9.	25	6.72	1.25	12.50	6.40 ± 0.16	0.59±0.03
						avg.:0.62±0.03
10.	25	9.50	1.25	12.50	9.56 ± 0.10	0.62±0.03
11.	30	9.48	1.25	12.50	11.25 ± 0.10	0.75±0.03
12.	35	9.46	1.25	12.50	14.70 ± 0.13	0.98 ± 0.04
13.	40	9.44	1.25	12.50	19.50 ± 0.29	1.31±0.04
14.	25	9.50	1.25	12.50	6.53 ± 0.10	0.44±0.02

STable 2. The kinetic data of the catalytic oxidation of OAPH₃.

Mean value of the kinetic constant k_{obs} and its standard deviations $\sigma(k_{obs})$ were calculated as

kobs = $(\sum_{i} w_i k_i / \sum_{i} w_i)$ and $\sigma(k_{obs}) = (\sum_{i} w_i (k_i - k_2)^2 / (n-1) \sum_{i} w_i)^{1/2}$, where $w_i = 1/\sigma_i^2$

* Under air

14. in MeOD

Instruments: Gas chromatographic – Mass Spectrometric (GC-MS) analyses were carried out on a GCMS-QP2010 SE instrument with secondary electron multiplier detector. NMR spectrum: ¹H and ¹³C NMR spectra were collected on 400 MHz NMR spectrometers (Bruker Avance) using DMSO-d6 and CDCl₃ as solvent. Chemical shifts are reported in parts per million (ppm). Chemical shifts for protons are reported in parts per million downfield and are referenced to residual protium in the NMR solvent (δ (DMSO-d6) = 2.50, 39.52 and δ (CDCl₃) = 7.24, 77)).

SFigure 13. ¹H NMR spectrum of 3,5-di-*tert*-butylquinone.

(Uyanik, M.; Mutsuga, T.; Ishihara, K.*Molecules* **2012**, *17*, 8604-8616.)

SFigure 14. ¹³C NMR spectrum of 3,5-di-*tert*-butylquinone.

(Uyanik, M.; Mutsuga, T.; Ishihara, K. Molecules 2012, 17, 8604-8616.)

SFigure 15. ¹H NMR spectrum of 2-aminophenoxazine-3-one.

(Suzuki, H., Furusko, Y., Higashi, T. Ohnishi, Y., Horinouchi, S. J. Biol. Chem. 2006, 2, 824-833.)

SFigure 16. ¹³C NMR spectrum of 2-aminophenoxazine-3-one.

(Suzuki, H., Furusko, Y., Higashi, T. Ohnishi, Y., Horinouchi, S. J. Biol. Chem. 2006, 2, 824-833.)

SFigure 17. Mass spectrum of 3,5-di-*tert*-butylquinone.

(http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi)

SFigure 18. Mass spectrum of 2-aminophenoxazine-3-one.

(Friebe, A., Vilich, V., Hennig L., Kluge M., Sicker D. *Appl Environ Microbiol*. **1998**, *64*(7), 2386–2391.)