Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

New J. Chem., Elec. Supp. Info. (ESI) -1 -

Multi-nuclear NMR of axially chiral biaryls in polypeptide orienting solvents: spectral discriminations and enantiorecognition mechanisms

Philippe Berdagué,^a Jose-Enrique Herbert-Pucheta,^a Vishwajeet Jha,^b Armen Panossian,^b Frédéric R. Leroux,^b and Philippe Lesot^a*

^aLaboratoire de RMN en Milieu Orienté, Université Paris Sud, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, 91405 Orsay, France.

^bLaboratoire de Chimie Moléculaire, Université de Strasbourg, UMR CNRS 7509, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France.

E-mail : philippe.lesot@u-psud.fr ; Tel.: +33 (0)1 69 15 47 59; Fax : +33 (0)1 69 15 81 05

ELECTRONIC SUPPLEMENTARY INFORMATION: INDEX

I. Further information: background on NMR in CLC, further experimental and analytical details

II. Supplementary Tables

Table SI-1: Notation and sample composition

Table SI-2: Number of experimentally discriminated ³¹P, ¹³C and ²H sites in PBLG/chloroform.

Table SI-3: δ ⁽¹³C) in ppm and magnitude of spectral enantiodiscriminations in Hz.

Table SI-4: Values of dipolar moments (scalar and x, y, z components) of various biaryls in vacuum and in chloroform.

III. Supplementary figures

Figure SI-1: Schematic principle of the ¹³C, ³¹P and ²H spectral enantiodiscriminations in CLC.

- Figure SI-2. Schematic pathway leading to the preparation of the chiral *ortho*-trisubstituted biaryls 2, 5 and 17.
- Figure SI-3. 400.1 MHz ¹H 1D-NMR spectrum of (R/S)-10 and (R)-10 both dissolved in PBLG/CHCl₃.
- **Figure SI-4.** 161.9 MHz ³¹P-{¹H} 1D-NMR spectrum of (*R*/*S*)-**16** dissolved in achiral isotropic solvent (CHCl₃) and in PBLG/CHCl₃.
- **Figure SI-5.** Possible spectral solutions explaining the presence of two doublets for each ³¹P site of (R/S)-16.
- **Figure SI-6.** Example of comparison between the ¹³C-{¹H} 1D-NMR of (*R/S*)-**5** dissolved in isotropic solution (CHCl₃) and in CLC (PBLG/CHCl₃).
- **Figure SI-7.** Part of ¹³C-{¹H} 1D-NMR spectrum of (R/S)-9 and (b) (R/S)-7 recorded in PBLG/CHCl₃ and entered between 129 and 135 ppm.
- **Figure SI-8.** Zoom on C-3/C-10 carbons of 100.6 MHz ¹³C-¹H T-resolved 2D spectrum of (*R/S*)-3 dissolved in PBLG/CHCl₃.
- **Figure SI-9.** Full 161.9 MHz proton-decoupled ³¹P-³¹P COSY 2D spectrum and tilted ³¹P Tresolved 2D spectrum of (*R*/*S*)-**16** dissolved in PBLG/CDCl₃.
- **Figure SI-10.** Full 161.9 MHz proton-decoupled tilted ³¹P T-resolved 2D spectrum of (*R*/*S*)-**16** recorded in PBLG/CDCl₃.
- Figure SI-11. Examples of homonuclear 2D maps of 16 dissolved in PBLG at 295 K.

- **Figure SI-12.** Two expanded regions of the 92.1 MHz proton-decoupled NAD Q-COSY Fz 2D map centered on the (a) aromatic and (b) aliphatic regions of (*R*/*S*)-**17** dissolved in PBLG/CHCl₃.
- Figure SI-13. 92.1 MHz proton-decoupled NAD 2D-NMR spectrum of (R/S)-9 dissolved in PBLG/CHCl₃.
- **Figure SI-14.** 92.1 MHz ${}^{2}H{}^{1}H$ 2D-NMR spectrum at natural abundance level of (*R*/*S*)-**2** and (*R*/*S*)-**8** dissolved in PBLG/CHCl₃.
- **Figure SI-15.** 92.1 MHz ${}^{2}H{}^{1}H{}$ 2D-NMR spectrum at natural abundance level of (*R*/*S*)-**6** and (*R*/*S*)-**11** dissolved in PBLG/CHCl₃.
- **Figure SI-16.** Variation of the overall molecular dipole moment (μ_{mol} , continuous line) and the electronic energetic profile ($\Delta E_{electronic}$, dotted line) with respect to the interplanar angle redundant coordinate scanning (ϕ_{AB}) of analytes (a) **2** and (b) **5**.
- Figure SI-17. 400.1 and 600.1 MHz ¹H 1D-NMR spectra and 400 MHz ¹H-{³¹P} 1D-NMR spectrum of **16** in CHCl₃.
- Figure SI-18. 400.1 MHz ¹H-¹H COSY 2D spectrum of 16 in CHCl₃.
- Figure SI-19. 400.1 MHz ¹H-³¹P J-resolved of 16 in CHCl₃.
- **Figure SI-20.** 161.9 MHz ¹H-³¹P HMBC of **16** in CHCl₃.
- **Figure SI-21.** Spectral assignment of aromatic protons (δ and ⁿJ_{HH} and ⁿJ_{HP}) in rings A and B.

ELECTRONIC SUPPLEMENTARY INFORMATION: TEXT & DATA

I. Further information: background on NMR in CLC, further experimental and analytical details

I.1 Brief background of NMR in CLC

In contrast to liquid phases, compounds dissolved within homogeneous, uniform liquid crystals adopt a macroscopic orientation under the effect of the magnetic field, \mathbf{B}_{o} .¹ Consequently, all ordersensitive NMR interactions, such as chemical shift anisotropy (H_{a}^{aniso}), dipolar couplings ($_{H_{a}}$) or quadrupolar couplings ($_{H_{a}}$) (for spin I > 1/2) are no longer motionally averaged to zero.^{2,3} Compared to isotropic NMR spectra, the presence of anisotropic interactions leads to spectral modifications as schematically depicted in **Figure 3**.

When the liquid crystal is chiral (CLC), the intermolecular interactions between each enantiomer and the CLC differ (when oriented in the magnetic field of the spectrometer), and their molecular orientations (and subsequently the internuclear vectors, i-j) are not the same on average ($S_{\alpha\beta}^{s} \neq$

 $S_{\alpha\beta}^{R}$ leading to $S_{i,i}^{S} \neq S_{i,i}^{R}$).² Due to the breaking of symmetry in CLC for ordering, same situation arises for

enantiotopic directions (internuclear vectors) in prochiral molecules, and we have $S_{i,i}^{\text{pro-}R} \neq S_{i,i}^{\text{pro-}R}$.⁴ In both

cases, spectral modifications are expected when comparing NMR spectra/signals recorded with chiral and achiral liquid crystal (ALC). Generally a doubling of the spectral information/patterns for a given nuclear site indicates that the enantiorecognition phenomena occur and are revealed by NMR (see **Figure SI-1**).

Specifically dedicated to the analysis of organosoluble chiral analytes, homopolypeptide lyotropic CLC appear to be the most useful and efficient weakly orienting chiral mesophases for five primary reasons: i) all components are commercially available (polypeptide, organic co-solvent); ii) different types of homopolypeptides (or a mixture of them) can be used (PBLG, PCBLL or PELG)⁵; iii) a large panel of organic co-solvents (from apolar systems to polar aprotic ones) can be used, whereas their choice mainly depends on the solubility properties of analytes; iv) the approach does not request any specific polar groups in solutes (contrarily to almost all of classical NMR methods), and hence it can be applied to a wide variety of analytes (from alkanes to charged organometallic complexes); v) spectral enantiodiscriminations can be revealed from any magnetically active nuclei present in the molecules.⁶

I.2 1D-NMR versus 2D-NMR experiments

Initially developed using 1D-NMR on deuterated labeled solutes,⁷ this methodology has been successfully extended from isolated but 100% abundant nuclei such as ¹⁹F or ³¹P,^{8,9} to nuclei at low natural abundance such as ¹³C (1.10 %) or ²H (1.55 × 10⁻² %).^{10,11} The analytical interest of working with highly abundant nuclei such as ¹H is partly moderated by the important number of short- and long-range ¹H-¹H dipolar couplings that generally obscure the spectra and/or lead to low-resolution spectral patterns. Adapted solutions to record site-specific resolved spectra such as selective excitation 2D-NMR experiments (SERF)¹² and more recently the spatially encoded selective 2D techniques (along Z-direction)^{12,13} exist. Although several variations of these experiments have been proposed to improve their robustness, the experiment set up is far to be trivial, while the analysis of second order spin systems remains an arduous task.¹³ These approaches will not be explored in the present study.

Disregarding the sensitivity aspects, proton-decoupled NMR of very weakly abundant nuclei as ¹³C or ²H is advantageous because the detection of isotopomers containing two mutually interacting nuclei (scalar and dipolar coupling) is experimentally difficult or still impossible to be detected. Note however that first NMR detections of ¹³C-²H (enantio)-isotopomers were reported in 2012.¹⁴ On the other hand, the analysis of their NMR spectra is facilitated compared to ones of strongly abundant nuclei. Beside this, and contrarily to NMR of specifically labeled molecules, all molecular sites are potential sites where spectral enantiodiscriminations can be revealed. As a racemic mixture is generally regarded first, the nuclear site showing the best spectral discriminations can be then selected to measure the enantiomeric excess in enantioenriched series.

Interestingly ¹³C-{¹H} 1D-NMR spectra in ALC are a sum of single resonances associated to each inequivalent ¹³C site whereas pairs of lines are observed in CLC if enantiodiscrimination on the basis of ¹³C CSA difference occurs (see **Figure 3**). The large range of dispersion of ¹³C chemical shifts (0 to 200 ppm) is advantageous to reduce/avoid excessive overlaps of ¹³C lines, and a simple comparison with the isotropic ¹³C-{¹H} 1D-NMR spectrum generally enables to rapidly assess the sites showing a chiral separation.⁷ The analytical situation is more complex for Natural Abundance Deuterium NMR (NAD NMR) because spectra exhibit a sum of quadrupolar doublets (QD) associated to each inequivalent ²H site. In CLC, two QDs are expected to be detected for each discriminated ²H site. Even for small-sized molecules, numerous peaks overlap and doublet tangling can lead to undecipherable NMR results. This complexity originates from: i) the number of doublets; ii) the variation of quadrupolar splittings (Δv_0) from one site to another one (from 0 to 500 Hz, generally); and iii) a rather low ²H chemical dispersion (0 to 13 ppm). Contrarily to ¹³C-{¹H} 1D-NMR, analysis of complex NAD NMR spectra is facilitated by recording 2D experiments able to correlate the two components of each ²H QD (QUOSY-type experiments).^{11,15} This in turn helps to assign them on the basis of their chemical shifts. Due to the very low sensitivity of NAD NMR, workable results are generally obtained when sufficient amounts of enantiomeric mixture (60-100 mg) are available, in particular for analytes of high molecular weight.

If the proton broadband decoupling greatly simplifies the analysis of NMR spectra of X nuclei, it removes all heteronuclear dipolar couplings, ¹H-X, that are also sensitive to the differential ordering of enantiomers, and so might be used to reveal enantiodiscriminations. Due to the small magnitude of ¹H-²H dipolar couplings (< 1-2 Hz) originating from the low γ (²H) and small order parameters of solute (S = 10⁻³ to 10⁻⁵), proton-coupled ²H NMR is weakly relevant in practice, and has never been applied, so far. In contrast, proton-coupled ¹³C NMR can provide a possible alternative to ¹³C-{¹H} NMR in particular when the molecule possesses only sp³ hybridized carbon atoms for which differences of CSA are generally very weak.¹⁰ The detection of enantiodiscriminations on the basis of (one-bond) ¹H-¹³C dipolar difference requests recording ¹H-¹³C heteronuclear 2D experiments such as HETSERF or HSQC experiments.¹⁶

I.3 Experimental section

Material and general comments. The preparation of (sealed) anisotropic NMR tubes and practical aspects have been reported in previous papers.^{2,4,5} However, two crucial points must be reminded. First it is preferable to directly weigh each component of the mixture within the NMR tubes and seal them to avoid organic solvent evaporation during NMR acquisitions. Second, it is necessary to avoid solute orientational inhomogeneities (mainly due to matter gradients) in order to obtain high-resolution

spectra. So far, several low-speed centrifugation cycles of the tube at short time repetition provide the best way to proceed (between each centrifugation cycle, the tube is inverted). Finally note that the solute can be extracted from the liquid crystals.

I.4 ³¹P-³¹P correlation 2D-NMR approaches

Figures SI-11a (top) and SI-11b report respectively the expansions of the anisotropic, protondecoupled ³¹P-³¹P COSY spectrum (downfield diagonal) and T-resolved map (up-field region) of (±)-16 showing ³¹P signals of P_A and P_B atoms, respectively (the full spectra are shown in Figure SI-5 and SI-6). Clearly the relative positions of diagonal and autocorrelation peaks on the COSY 2D map allow to unambiguously assign the signals for each enantiomer while the shifting of lines indicates that the spectral discrimination is mainly dominated by a difference of ³¹P CSA ($\Delta \sigma$ = 4 Hz). The comparison with the 2D map of the enantioenriched mixture confirms this analysis (Figure SI-11a, bottom). More interesting is the ³¹P T-resolved spectrum presented in Figure SI-11b (see also Figure SI-6). Indeed, the separation of spectral information, $\delta^{(31P)}$ et T(³¹P-³¹P), on the F_2 and F_1 dimensions, respectively facilitates the analysis of lines and reveals clearly a tiny difference of total couplings ³¹P-³¹P ($\Delta T < 1$ Hz) between the two enantiomers on both ³¹P atom sites (P_A and P_B), thus confirming the measurement made on the 1D spectrum. Finally the last strategy to determine the ³¹P enantio-resonances belonging to each isomer on spectrum of (R/S)-16 consists in recording the ³¹P-³¹P INADEQUATE 2D experiment.¹⁷ In this scheme, the double quantum (DQ) coherence of the two coupled ³¹P atoms (an AX spin system) is excited and evolves during the t_1 dimension before being reconverted into single coherence(SQ) just before acquisition of the signal. After a double FT, the ³¹P signal in F_1 is located at the sum of ³¹P frequencies (measured in F_2) as seen in **Figure SI-11c**. As a direct consequence, the difference in Hz between the ³¹P lines (DQ signal) observed in F_1 and associated to each enantiomer is doubled compared to the one measured in the F_2 dimension. Experimentally, a splitting of 8 Hz separates the two resonances, thus increasing the quality of the spectral enantiodiscrimination on the basis of $\Delta \sigma \Box^{31}$ P). Theoretically, as the amplitude of the SQ \rightarrow DQ transfer depends on the magnitude of coupling between interacting nuclei (here, T(³¹P-³¹P)), this experiment is basically less adapted for quantitative purposes, unlike previous experiments. However when the difference of total coupling for each enantiomer is less than 10-20%, the difference of signal amplitude remains moderate, thus giving the possibility to evaluate the ee with acceptable accuracy.

I.5 Assignment of ³¹P atoms of chiral biaryl (16)

The assignment of ³¹P atoms is not trivial. It derives from the combined spectral analysis of various NMR spectra: i)¹H 1D-NMR spectrum (with and without ³¹P decoupling) (**Figure SI-17**); ii) ¹H-¹H COSY 2D map (**Figure SI-18**); iii) the ³¹P J-resolved 2D map (**Figure SI-19**); and the iv) the ³¹P-¹H HMBC 2D map (**Figure SI-20**). This latter shows the heteronuclear correlations between ³¹P_A and H-3 atoms (³J(³¹P_A-¹H₃) = 3.1 Hz) and between ³¹P_B and H-9 atoms (³J(³¹P_A-¹H₃) = 4.3 Hz (**Figure SI-13**). From the analysis of ¹H-¹H 2D COSY, the correlations ¹H-¹H (**Figure SI-18**) allow the assignment of the ¹H signals (3 and 4 correlations) of aromatic rings A and B. The result agrees with the analysis of ³¹P J-resolved 2D map (**Figure SI-19**) that clearly shows the ¹H signals that are coupled (or not) with the phosphorous atoms ³¹P_A and ³¹P_B.

I.6 References for ESI

- 1 J.W Emsley and J.C. Lindon in *NMR spectroscopy using liquid crystal solvents*, (1975). Pergamon Press, Oxford.
- 2 M. Sarfati, P. Lesot, D. Merlet and J. Courtieu, Chem. Commun., 2000, 2069.
- 3 (a) C. Aroulanda, D. Merlet, J. Courtieu and P. Lesot, *J. Am. Chem. Soc.*, 2001, **123**, 12059; (b) P. Lesot, Z. Luz, C. Aroulanda and H. Zimmermann, *Magn. Reson. Chem.*, 2014, **52**, 581.
- 4 P. Lesot, C. Aroulanda, H. Zimmerman and Z. Luz, Chem. Soc. Rev., 2015, 44, 2330.
- 5 (a) C. Aroulanda, M. Sarfati, J. Courtieu and P. Lesot, *Enantiomer*, 2001, 6, 281; (b) C. M. Thiele, S. Berger, *Org. Lett.* 2003, 5, 705; (c) P. Lesot, O. Lafon, C. Aroulanda and R. Dong, *Chem. Eur. J.*, 2008, 14, 4082.

- 6 (a) O. Lafon, P. Lesot, M. Rivard, M. Chavarot, F. Rose-Munch and E. Rose, Organometallics, 2005, 24, 4021; (b) M. Sarfati, C. Aroulanda, J. Courtieu and P. Lesot, *Tetrahedron: Asymmetry*, 2001, 12, 737.
- 7 (a) A. Meddour, I. Canet and J. Courtieu, *J. Am. Chem. Soc.*, 1994, **116**, 9652; (b) I. Canet, J. Courtieu, A. Meddour, A. Loewenstein and J.-M. Péchiné *J. Am. Chem. Soc.*, 1995, **117**, 6520.
- 8 (a) M. Jacubova A. Meddour, J.-M. Péchiné, A. Baklouti and J. Courtieu, *J. Fluorine Chem.*, 1977, **89**, 149; (b) V. Madiot, P. Lesot, D. Grée, J. Courtieu and R. Grée, *Chem. Commun.*, 2000, 169.
- 9 A. Meddour, J. Uziel, J. Courtieu and S. Jugé, Tetrahedron: Asymmetry, 2006, 17, 1424.
- 10 (a) A. Meddour, P. Berdagué, A. Hedli, J. Courtieu and P. Lesot J. Am. Chem. Soc., 1997, 119, 4502; (b) P. Lesot, O. Lafon, J. Courtieu and P. Berdagué, Chem. Eur. J., 2004, 10, 3741; (c) P. Tzvetkova, B. Luy and S. Simova, Topics in Chemistry and Material Science 5 (2011) pp. 70-77 of Current Issues in Organic Chemistry, (Eds: R. D. Nikolova, S. Simova, P. Denkova, G. N. Vayssilov), Heron Press Ltd, Birmingham, 2011.
- (a) P. Lesot, D. Merlet, A. Loewenstein and J. Courtieu, *Tetrahedron: Asymmetry*, 1998, 9, 1871; (b) D. Merlet, B. Ancian, J. Courtieu and P. Lesot, *J. Am. Chem. Soc.*, 1999, 121, 5249; (c) P. Lesot, M. Sarfati and J. Courtieu *Chem. Eur. J.*, 2003, 9, 1724; (d) O. Lafon, P. Lesot, D. Merlet and J. Courtieu, *J. Magn. Reson.*, 2004, 171, 135; (e) P. Lesot in *Deuterium NMR of Liquid-Crystalline Samples at Natural Abundance*, *Encyclopedia of Magnetic Resonance (eMagRes)*, 2013, 2 (3), 315, Doi:10.1002/9780470034590.Emrstm1318.
- 12 J. Farjon, D. Merlet, P. Lesot and J. Courtieu, J. Magn. Reson., 2002, 158, 169.
- 13 D. Merlet, L. Béguin, J. Courtieu and N. Giraud, J. Magn. Reson., 2011, 209, 315.
- 14 P. Lesot and O. Lafon, Anal. Chem., 2012, 84, 4569.
- 15 (a) D. Merlet, B. Ancian, J. Courtieu and P. Lesot, *J. Am. Chem. Soc.*, 1999, **121**, 5249; (b) O. Lafon, P. Lesot, D. Merlet and J. Courtieu, *J. Magn. Reson.*, 2004, **171**, 135.
- 16 (a) J. Farjon, J.-P. Baltaze, P. Lesot, D. Merlet and J. Courtieu, *Magn. Res. Chem.*, 2004, 42, 594, (2004); (b) S. Chaudhari, N. Nilamoni and N. Suryaprakash, *RSC Advances*, 2012, 2, 12915; (c) N. Lokesh and N. Suryaprakash, *Chem. Phys. Lett.* 2015, 625, 10.
- 17 (a) A. Bax, R. Freeman and S. P. Kempsell, *J. Am.Chem.Soc.* 1980, **102**, 4849; (b) A. Bax, R. Freeman and S. P. Kempsell, *J. Magn. Reson.* 1980, **41**, 349; (c) A. Bax, R. Freeman, T. A. Frenkiel and M. H. Levitt, *J. Magn. Reson.* 1981, **43**, 478; (d) A. Bax and R. Freeman, *J. Magn. Reson.* 1980, **41**, 507; (e) P. Lesot, J. W. Emsley and J. Courtieu; *Liq. Crystals*, 1998, **25**, 123.

II. Supplementary Tables

Table \$	SI-1:	Notation,	formula	and	sample	compositions	of	19	samples	(17	solutes)	ranked	by
Series	(I to IV) and incr	easing n	umb	er of Ca	rbon and Hydi	roge	en r	nuclei ^a				

Series	Solute Nb	Formula	Mw (g/mol	m(Solute)) (mg)	m(PBLG) (mg)	m(Co-solvent) (mg)	% w/w PBLG
	1	$C_{12}H_7IBr_2$	437.9	19.9	90.3	531.6 (C D Cl ₃)	14.1
	2	$C_{13}H_8O_2Br_2$	356.0	54.5	92.6	520.5 (CHCl ₃)	13.9
I	3	$C_{13}H_8OBr_2$	340.0	61.1	96.5	537.3 (CHCl ₃)	13.9
	4	$C_{13}H_{10}OBr_2$	342.0	100	92.4	471.3 (CHCl ₃)	14.0
	5	$C_{13}H_{10}Br_2$	326.0	21.2	90.1	532.1 (C D Cl ₃)	14.0
	6	$C_{14}H_{10}O_2Br_2$	370.0	72.2	90.6	487.6 (CHCl ₃)	13.9
	7	C ₁₂ H ₇ IBrCl	393.4	21.0	90.1	532 (C D Cl ₃)	14.0
	8	$C_{13}H_8O_2BrCl$	311.6	59.5	91.0	503.1 (C D Cl ₃)	13.9
II	9	C ₁₃ H ₈ OBrCl	295.6	62.6	92.5	512.5 (CHCl ₃)	13.9
	10			19.0	90.7	541.3 (C D Cl ₃)	14.0
	10' (<i>R</i>)	$C_{13}H_{10}BrCl$	281.6	19.5 (<i>R</i>)	90.6	537.7 (C D Cl ₃)	14.0
	11	$C_{14}H_{10}O_2BrCI$	325.6	70.1	90.9	488.2 (CHCl ₃)	14.0
	12	C ₂₄ H ₁₇ PBrCl	451.7	26.0	91.9	539.2 (CDCl ₃)	14.0
ш	13	C ₂₄ H ₁₇ P(O)BrCl	467.7	96.2	101.7	537.5 (CHCl ₃)	13.8
	14	C ₂₄ H ₂₉ PBrCl	463.8	25.3	96.4	570.0 (CHCl ₃)	13.9
	15	C ₂₄ H ₂₉ P(O)BrCl	479.8	20.1	96,2	579.8 (CHCl ₃)	13.8
	16			30.4	92.3	545.6 (C D Cl ₃)	13.9
IV	16' (<i>R</i>)	$C_{36}H_{27}P_2CI$	557.0	15.4 (±)+16.2 (<i>R</i>)	92.1	538.7 (C D Cl ₃)	13.9
	17	$\bar{C}_{14}\bar{H}_{13}\bar{O}\bar{B}r$	277.2	100.6	91.1	460.5 (CHCl ₃)	14.0

^aMajor enantiomer in enantioenriched samples is indicated in column 2. ^bThe error on weighing is ± 0.5 mg.

Table SI-2: Number of ³¹P, ¹³C and ²H sites experimentally discriminated and the largest spectral enantiodifference ($|\Delta\Delta\sigma|$ or $|\Delta\nu_Q|$) measured on spectra recorded in PBLG/chloroform

Comp	. Formula Mw	Nb. of ³¹ P sites	Nb. of ¹³ C sites	Nb. of ² H sites
(Series)	(g/mol)	$(\Delta\Delta\sigma ^{max} \text{ in Hz})^a$	$(\Delta\Delta\sigma ^{\max} \text{ in Hz})^a$	$(\Delta\Delta v_{Q} ^{max} \operatorname{in} Hz)^{b}$
1 (I)	$C_{12}H_7IBr_2$ 437.9	_	1 / 12 ΔΔσ = 2	-
2 (I)	$C_{13}H_8O_2Br$ 356.0	-	12 / 13 ΔΔσ = 14	Unexploitable results
3 (I)	$C_{13}H_8OBr_2$ 340.0	-	9 / 13 ΔΔσ = 3.5	7* / 8 ΔΔν _Q = 66
4 (I)	$C_{13}H_{10}OBr_2$ 342.0	-	10 / 13 ΔΔσ = 2.5	7* / 8 ΔΔν _Q = 125
5 (I)	$\overbrace{b_r}^{Me} \xrightarrow{b_r} C_{13}H_{10}Br_2$ 326.0	-	6 / 13 ΔΔσ = 2.5	-
6 (I)	$C_{14}H_{10}O_2Br_2$ 370.0	-	8 / 13 ΔΔσ = 4.5	5 / 8 ΔΔν _Q = 152
7 (II)	C ₁₂ H ₇ IBrCl 393.4	-	3 / 12 ΔΔσ = 2.5	-
8 (II)	$C_{13}H_8O_2BrCl$	-	11 / 13 ΔΔσ = 14	Unexploitable results
9 (II)	$C_{13}H_8OBrCl$ 295.6	-	11 / 13 ΔΔσ = 3.5	6 / 8 ΔΔν _Q = 78
10 (II)	$C_{13}H_{10}BrCl$ 281.6	-	6 / 13 ΔΔσ = 3.5	-

Comp.	Formula Mw	Nb. of ³¹ P sites	Nb. of ¹³ C sites	Nb. of ² H sites
(Series)	(g/mol)	($ \Delta\Delta\sigma ^{ ext{max}}$ in Hz) ^a	$(\Delta\!\Delta\sigma ^{\max}$ in Hz) ^a	$(\Delta \Delta v_{Q} ^{max} \text{ in } Hz)^{b}$
11 (II)		-	8 / 13	5/8
	C ₁₄ H ₁₀ O₂Br 325.6		$ \Delta\Delta\sigma $ = 4.5	$ \Delta\Delta v_Q = 149$
12 (III)		0 / 1	4 / 24 ΔΔσ = 3	-
13 (III)	C ₂₄ H ₁₇ PBrCl 451.7	0 / 1	12 / 24 ΔΔσ = 7.5	-
14 (III)	C ₂₄ H ₁₇ OPBrCl 467.7 P_{CY_2} P_{CY_2}	1 / 1 ΔΔσ = 6.8	3 / 24 ΔΔσ = 4	-
15 (III)	463.8 $(C_1 = B_1^{O_1})^{O_2}$	0 / 1	2 / 24 ΔΔσ = 2.5	-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-

7/9

 $|\Delta\Delta\nu_Q| = 85$

- 8 -

New J. Chem., Elec. Supp. Info. (ESI)

479.8

CI Ph2P

C₂₄H₁₇PBrCl 557.0

[–] 16 (IV)

17 (IV)

 $\frac{\underset{277.2}{C_{14}H_{13}OBr}}{a \text{ Largest enantiodifference of CSA : } |\Delta\Delta\sigma|^{max} = |\Delta\sigma(R) - \Delta\sigma(S)|$ $^{b} \text{ Largest enantiodifference of RQC : } |\Delta\Delta\nu_{Q}|^{max} = |\Delta\nu_{Q}(R) - \Delta\nu_{Q}(S)|$

2/2

 $|\Delta\Delta\sigma| = 4.5$

12/36

 $|\Delta\Delta\sigma| = 9.5$

6 / 14

 $|\Delta\Delta\sigma| = 1.5$

Solute (Series)	Formula	Nb. of ¹³ C sites discriminated	ð(¹³ C) and ∆∆σ(¹³ C) ^{a,b,c,}
1 (I)		1 / 12	145.65 (0), 145.00 (0),138.01 (0),132.55 (0),132.54 (0),130.68 (0),130.43 (0),129.73 (0),127.41 (0), 123.19 (0), 123.12 (0), 100.10 (2)
2 (I)		12 / 13	168.75 (0), 142.13 (2.5), 141.96 (5), 136.07 (9), 132.91 (14), 130.91 (12), 130.17 (6), 130.14 (4), 128.92 (6.5), 128.84 (4.5). 127.89 (5.5), 124.87 (11), 123.62 (9.5)
3 (I)	CHO Br Br	9 / 13	190.40 (0), 144.39 (2.5), 137.81 (0), 136.95 (0), 135.69 (1.5), 132.19 (1.5), 130.89 (2.5), 129.67 (0), 129.61 (2), 126.84 (2), 126.40 (3,5), 125.28 (3), 123.38 (1)
4 (I)	OMe Br Br	10 / 13	157.74 (1.5), 138.45 (2), 131.92 (0), 131.00 (0), 130.92 (1), 129.80 (2), 128.78 (2), 126.68 (1), 124.38 (2.5), 124.31 (1.5), 123.85 (0), 109.71 (1.5), 55.73 (2)
5 (I)	Br Br	6 / 13	141.56 (2.5), 141.50 (2.5), 138.74 (2), 132.56 (0), 130.47 (0), 130.01 (1), 129.24 (2.5), 129.14 (2.5), 128.88 (0), 127.40 (0), 124.00 (0), 123.45 (0), 20.88 (0)
6 (I)	$C_{14}H_{10}O_2Br_2$	8 / 13	165.80 (0), 141.89 (2), 140.73 (0), 136.15 (0), 132,13 (1,5), 131,55 (4), 129.52 (4.5), 129.14 (2.5), 128.96 (3), 128.59 (0), 126.35 (0), 125.51 (3.5), 122.70 (1,5), 51.83 (0)
7 (II)		3 / 12	144.07 (0), 143.20 (0), 137.46 (0), 133.53 (1), 132.58 (0), 130.55 (0), 130.41 (0), 129.76 (0), 129.32 (1), 127.42 (0), 123.31 (0), 100.49 (2.5),
8 (II)	COOH CI Br	11 / 13	169.18 (0), 140.34 (0), 139.84 (5.5), 134.42 (11.5), 132.98 (7.5), 132.74 (14), 130.71 (12), 130.19 (5.5), 129.94 (5), 128.62 (4), 128.45 (7.5), 127.68 (4). 123.51 (7.5)
9 (II)	CHO CI Br	11 / 13	190.17 (1), 142.43 (2), 135.46 (1.5), 135.17 (0), 134.80 (2.5), 134.61 (1.5), 132.19 (3.5), 130.96 (3), 129.68 (0), 129.33 (2), 126.82 (1.5), 125.82 (3), 123.49 (0.5)
10 (II)		6 / 13	139.75 (2.5), 139.62 (2.5), 138.63 (1.5), 133.61 (0), 132.58 (0), 130.56 (0), 129.17 (3.5), 128.91 (3.5), 128.25 (0), 127.40 (1.5), 126.79 (0), 123.60 (0), 20.49 (0)

Table SI-3: $\delta(^{13}C)$ (in ppm) and spectral discrimination between enantiomers for each ^{13}C site (in Hz) observed at 298 K

Table SI-3 (continued):						
Solute (Series)	Formula	Nb. of ¹³ C sites discriminated	δ(¹³ C) and ΔΔσ(¹³ C) ^{a,b,c,}			
11 (III)		8 / 13	165.88 (0), 140,08 (2.0), 138,92 (0.5), 134,94 (3.5), 132.92 (0), 132,05 (1,5), 131,58 (4), 129,55 (4.5), 128.74 (0), 128,61 (0), 128,53 (3.5), 126,37 (0), 122.77 (2), 51,80 (0)			
12 (IV)		4 / 24 ^d	144.71 (0), 140.10 (0), 138.81 (0), 136.52 (0) 135.54 (0), 134.53 (0), 133.74 (0), 133.57 (3) 132.24 (0), 132.18 (0), 132.08 (0), 131.52 (0) 129.81 (0), 129.11 (0), 129.04 (2), 128.73 (0) 128.69 (0), 128.45 (0), 128.38 (3), 128.11 (0) 127.43 (0), 126.91 (0), 126.28 (0), 123.94 (2)			
13 (IV)	Q PPh2 CI Br	12 / 24 ^d	142.75 (7,5). 136.22 (0). 136.19 (0), 134.04 (5,5) 132.63 (5,5), 132.27 (0). 131.82 (2), 131.72 (0) 131.64 (0), 131.43 (2,5),131.26 (3), 131.17 (0) 130.80 (4), 130.63 (0), 128.79 (2,5), 128.17 (7) 127.85 (2), 127.51 (0), 125.53 (2,5), 124.40 (3).			
14 (IV)		3 / 24 ^d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
15 (IV)		2 / 24 ^d	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
16 (V)	CI Ph ₂ P	12 / 36 ^d	144.86 (9.5), 144.27 (7.5), 140.45 (6), 138.26 (0), 137.76 (3), 136.76 (0), 136.55 (0), 136.36 (4.5), 135.02 (3), 134.69 (0), 133.88 (0), 133.76 (0),133.56 (5.5), 133.22 (0), 132.16 (7), 130.74 (0),129.38 (4), 128.71 (5), 126.61 (5), 128.37 (0),128.31 (0), 128.28 (0) ^f , 128.04 (0), 127.95 (0),127.71 (7.5)			

Table SI-3 (continued):

Solute	Formula	Nb. of ¹³ C sites	δ (¹³ C) and $\Delta\Delta\sigma$ (¹³ C) ^{a,b,c,}
(Series)		discriminated	
	OMe		156.55 (0), 138.63 (0), 137.38 (1.5), 132.01 (1),
17 (\)		6 / 14	130.89 (1.5), 129.81 (0), 128.47 (0), 128.19 (0),
17 (V)	Me Br		126.77 (0), 124.15 (1.5), 122.00 (1), 108.15 (1.5),
			55.37 (0), 19.53 (0)

^a The ¹³C signal of CHCl₃in the CLC is calibrated at 77 ppm.

^b In parenthesis is given the separation between ¹³C lines (in Hz) for a given site.

 $^{\rm c}$ The δ of quaternary carbons are written in bold.

^d The $\delta(^{13}C)$ of resonances listed here was achieved from the analysis of $^{13}C-\{^{1}H\}$ and $^{13}C-\{^{1}H, ^{31}P\}$ 1D-NMR spectra and $^{13}C-\{^{1}H\}$ and $^{13}C-\{^{1}H, ^{31}P\}$ J-mod 1D-NMR spectra.

^e An unresolved structure containing two resonances is observed on the ¹³C-{¹H, ³¹P} 1D-NMR spectrum.

^f Intense and broad structure containing seven peaks on the ¹³C-{¹H, ³¹P} 1D-NMR spectrum.

Table SI-4: Values of lowest-energy conformer (a.u.), values of biaryls interplanar torsional angle (degree), values of scalar and x, y, z components of molecular electric dipole moment (debye), and map of electrostatic potential surface determined by the means of the continuous polarization model and using CHCl₃ as implicit solvent^a

Table SI-4 (continued):

Table SI-4 (continued):

φ = +88.28°

^aGeometry optimizations and electronic structure determinations were carried out using the Gaussian 09 program (see Experimental Section in the article for details and references).

^bValue of energy (a.u.) of more stable conformer.

°Value of the biaryl interplanar angle (degree). As depicted below, the sign of the aforementioned interplanar angle was arbitrarily chosen for all biaryls by measuring the sign of ϕ_{X-C-Z} , where positions X, C and Z are highlighted in red in the figure shown below.

Required parameters are missing or incorrect.

^dValues of scalar and x, y, z components of tmolecular electric dipole moment (debye).

*Electrostatic Potential Surfaces maps were plotted by using the same contour level for all species (isovalue = 0.005 a.u.) in order to correlate species with families of a given topology: cylindrical and spherical topologies were assigned for series {I, II, IV(17)} and {III, IV(16)}, respectively.

III. Supplementary figures

Fig. SI-1. Schematic principle of the ¹³C, ³¹P and ²H spectral enantiodiscriminations in CLC based on a difference of (a) chemical shift anisotropies (CSA), $\Box \Box$, (b) residual dipolar couplings (RDC), D_{ij} , and (c) residual quadrupolar couplings (RQC), Δv_Q . For simplicity, we have considered that $v_i^{iso} = v_i^{aniso}$ (no CSA and solvent effect) for spectral patterns associated to RDC and RQC. In formula, $S_{\alpha\beta}\Box$ and S_{ij} are molecular and internuclear order parameters, respectively, while k_{ij} and K_D are the dipolar ($k_{ij} = h\gamma_i \gamma_i / 4\pi^2$) and quadrupolar coupling constant ($K_D = e^2 Q_D q_{C-D}/h$), respectively. For a and c, a single nucleus is considered (isolated spin or proton decoupled signals). The *R*/*S* assignments shown in all spectra are arbitrarily defined. The intensities of signals are not plotted to scale.

Fig. SI-2. Schematic pathway leading to the preparation of the chiral *ortho*-trisubstituted biaryls 2, 5 and 17. Details on the synthesis of other biaryls can be found in refs. 8, 18 and 19 of the article.

Fig. SI-3. 400.1 MHz ¹H signal (2.1 ppm) of methyl group of (a) (R/S)-**10** and (b) (R)-**10** both dissolved in the chiral mesophase, PBLG/CHCl₃. (c) Same spectrum as (b) when aromatic signals located at 7.23 ppm (H-3) are selectively irradiated (homodecoupling). Note the absence of doubling in (c).

Fig. SI-4. 161.9 MHz ³¹P-{¹H} 1D-NMR spectrum of (±)-**16** dissolved in (a) achiral isotropic solvent (CHCl₃) and (b) in PBLG/CHCl₃. Note the doubling of ³¹P signals originating from the spectral enantiodiscrimination of (±)-**16** in the CLC.

Fig. SI-5. Three possible spectral solutions explaining the presence of two doublets for P1 of (*R*/S)-**16** based on: (a) a difference of $T(^{31}P-^{31}P)$ but not $\Delta\sigma(^{31}P)$, (b) a difference of $\Delta\sigma(^{31}P)$ but not $T(^{31}P-^{31}P)$, (c) on a difference of $T(^{31}P-^{31}P)$ and $\Delta\sigma(^{31}P)$. Note that splittings between *A*/*B* lines (shielded components) differ in the (c) situation (contrarily to the a and b cases).

Fig. SI-6. Example of comparison between the 100.4 MHz ${}^{13}C-{}^{1}H$ 1D-NMR spectrum (region between 127.2 and 129.4 ppm) of (*R*/S)-**5** recorded in (a) isotropic solution (CHCl₃) and in CLC (PBLG/CHCl₃). Note the shift of ${}^{13}C$ resonances (up to 18 Hz) due to both the ${}^{13}C$ CSA anisotropy (due to the ordering) and the solvent effect. In both spectra, the ${}^{13}C$ signal of CHCl₃ has been arbitrarily calibrated at 77 ppm. On this region, largest enantiodiscriminations are observed on C-10 and C-4 carbon atoms.

Fig. SI-7. Part of ¹³C-{¹H} 1D-NMR spectrum of (R/S)-9 and (b) (R/S)-7 recorded in PBLG/CHCl₃ and entered between 129 and 135 ppm. Note the absence of enantiodiscriminations for (R/S)-7 in the spectral range shown.

Fig. SI-8. (a) Expanded region around 126.5 ppm of the 100.6 MHz ${}^{13}C{}^{-1}H$ T-resolved 2D spectrum of (*R/S*)-**3** dissolved in PBLG/CHCl₃. The map was recorded with 2 k (t_2) × 300 (t_1) data points and 48 scans per t_1 increment. The 2D matrix was then zero-filled to 2k (t_2) × 2k(t_1) data points. Note the difference of ${}^{1}T_{CH}$ couplings for each enantiomer at sites C-3 and C-11. The T_{CH} values (in Hz) measured in F_1 are equal to the half of the true values. As for **6**, the spectral pattern for both sites is dominated by the direct ${}^{1}T_{CH}$ coupling that is different for each enantiomer (${}^{1}T_{CH}^{A,B}(C-3)$] = 234/238 Hz and ${}^{1}T_{CH}^{A,B}$ (C-11)] = 66/74 Hz).

Fig. SI-9. 161.9 MHz proton-decoupled ³¹P-³¹P COSY 2D spectrum (phased) of (*R*/*S*)-**16** dissolved in PBLG/CDCl₃ with 1k (t_2) × 1k (t_1) data points and 2 scans per t_1 increment. The 2D matrix was then zero-filled to 2k (t_2) × 2k(t_1) data points. The map was symmetrized. As F_1 and F_2 projections, the ³¹P-{¹H} 1D spectrum is displayed. The center of two pairs of doublets was calibrated at 0

Fig. SI-10. Full 161.9 MHz proton-decoupled tilted ³¹P T-resolved 2D spectrum (magnitude) of (*R*/*S*)-**16** dissolved in PBLG/CDCl₃ and recorded with 1800 (t_2) × 256 (t_1) data points and 8 scans per t_1 increment. The 2D matrix was then zero-filled to 2 k (t_2) × 1 k (t_1) data points. The map was symmetrized after tilting.

The true F_1 and F_2 2D projections are shown. The center of two pairs of doublets was calibrated at 0

Fig. SI-11. Examples of homonuclear 2D maps of **16** dissolved in PBLG at 295 K. (a) Part of the phased ³¹P-³¹P COSY 2D map of (*R*/*S*)-**16** (*top*) and (*ee-R*)-**16** (bottom) at site ³¹P_A. (b) Part of tilted ³¹P T-resolved 2D (magnitude) spectrum of (*R*/*S*)-**16** at site ³¹P_B (see also the **Supp. Info** for details). Both maps are symmetrized (standard procedure). (c) Full phased ³¹P-³¹P INADEQUATE 2D spectrum of (*R*/*S*)-**16** recorded with a refocusing delay, τ sets at 13.2 ms. Proton decoupling is applied for each experiment. The sign of phase of peaks (+/-) is indicated.

Fig. SI-12. Two expanded regions of the 92.1 MHz proton-decoupled NAD Q-COSY Fz 2D map centered on the (a) aromatic and (b) aliphatic regions of (R/S)-**17** dissolved in PBLG/CHCl₃, The spectrum has been recorded at 295 K using 1200 (t_2) × 512 (t_1) data points and 200 scans per t_1 increment (T_{exp} = 15 h). The assignment of ²H DQs derives from the analysis of isotropic ¹H 1D/2D 1D/2D-NMR spectra in combination with assignments predicted by ACD software and increment tables. Exponential filtering (LB = 2 Hz) is applied on both dimensions.

Fig. SI-13. (a) Full 92.1 MHz proton-decoupled NAD *Q*-COSY Fz 2D spectrum of (*R*/S)-**9** dissolved in PBLG/CHCl₃ at 295 K and recorded with 800 (t_2) × 400 (t_1) data points and 264 scans per t_1 increment. The 2D matrix was then zero-filled to 2k (t_2) × 2k (t_1) data points. The map was symmetrized. The true F_1 and F_2 projections are displayed with different vertical scale. (b) Expansion on the aromatic region of the tilted *Q*-COSY Fz map. In F_2 dimension, the signal of CDCl₃ was arbitrarily set to 0 ppm.

Fig. SI-14. Full 92.4 MHz proton-decoupled NAD Q-COSY Fz 2D spectrum of (a) (*R*/S)-**2** and (b) (*R*/S)-**8** both dissolved in PBLG/CHCl₃ at 295 K. Spectra were recorded with 3k (t_2) × 512 (t_1) data points and 512 scans per t_1 increment. The 2D matrix was then zerofilled to 4k (t_2) × 2k (t_1) data points. The map was symmetrized. The true F_1 and F_2 2D projections are displayed. The largest QD labelled "PBLG" arises from the aromatic NAD signals of PBLG. (b) Zoom centred on about 7.5 ppm of the tilted Q-COSY Fz 2D map.

Fig. SI-15. Aromatic region of (tilted and symmetrized map) 92.4 MHz proton-decoupled NAD Q-COSY Fz 2D spectrum of (a) (R/S)-**6** and (b) (R/S)-**11** dissolved in PBLG/CHCl₃ at 295 K. NAD signals of quadrupolar doublets of the methyl group of (c) (R/S)-**6** and (d) (R/S)-**11** extracted from their associated map. Both 2D spectra were recorded with 2k (t_2) × 512 (t_1) data points and 128 scans *per* t_1 increment and then zerofilled to 4k (t_2) × 2k (t_1) data points. Exponential filtering was applied (LB = 2.5 Hz) on both dimensions. In F_2 dimension, the signal of CDCl₃ was arbitrarily set to 0 Hz. For (c and d), the 1D spectrum has been extracted from the tilted 2D map but here a gaussian window (GB = 0.4, LB =-3 Hz) has been applied on both dimensions prior to the double FT. NAD signals of the co-solvent impurity are marked with an asterisk.

Fig. SI-16. Variation of the overall molecular dipole moment (μ_{mol} , continuous line) and the electronic energetic profile ($\Delta E_{electronic}$, dotted line) with respect to the interplanar angle redundant coordinate scanning (ϕ_{AB}) of analytes (a) **2** and (b) **5** of series **I**, considering the solvent effects (CHCl₃). ϕ_{AB} sign was defined as described in **Table SI-4**. Both observables were obtained by means of the redundant coordinate coordinate optimization protocol, with the same level of theory described in **Section 3.3**, main text.

Fig. SI-17. (a and b) 400.1 and 600.1 MHz ¹H 1D-NMR spectra and (c) 400 MHz ¹H-{³¹P} 1D-NMR spectrum of **16** recorded in CHCl₃ at 295 K. The number of scans added was (a) 16, (b) 16 and (c) 8. On spectrum (a), a gaussian filtering was applied to improve the spectral resolution and separate all small couplings.

Fig. SI-18. 400.1 MHz ¹H-¹H COSY 2D spectrum of **16** recorded in CHCl₃ at 295 K. The 2D spectrum has been recorded with 2k (t_2) × 1k (t_1) data points and 8 scans per t_1 increment. The 2D matrix was then zero-filled to 2k (t_2) × 2k (t_1) data points and an exponential filtering is applied in both dimensions. As F_1 and F_2 projections are displayed the ¹H 1D-NMR spectrum (see **Figure SI-17a**).

Fig. SI-19. 600.13 MHz ¹H-³¹P J-resolved spectrum of **16** recorded in CHCl₃ at 295 K. The scalar splittings $J({}^{31}P{}^{-1}H)$ are observed parallel to the F_2 dimension. The 2D spectrum has been recorded with 2k (t_2) × 256 (t_1) data points and 8 scans per t_1 increment. The 2D matrix was then zero-filled to 4k (t_2) × 2k (t_1) data points and a gaussian filtering applied in both dimensions. In F_1 is displayed the true 2D projection. As F_2 projection is displayed the ¹H-{³¹P} (bottom) and ¹H (top) 1D-NMR spectra (see **Figure SI-17**).

Fig. SI-20. 161.9 MHz ¹H-³¹P HMBC 2D spectrum of **16** recorded in CHCl₃ at 295 K. Note the absence of correlation peaks for H₅ and H₁₁ (*para* position relative to the ³¹P atoms in associated rings A and B). The 2D spectrum has been recorded with 2k (t_2) × 990 (t_1) data points and 8 scans per t_1 increment. The 2D matrix was then zero-filled to 4 k (t_2) × 2 k (t_1) data points and no filtering was applied in both dimensions. As F_1 and F_2 projections are displayed the ³¹P-{¹H} and ¹H 1D-NMR spectrum.

Fig. SI-21. Final spectral assignment of aromatic protons (δ_i and ${}^nJ_{H-H}$ and ${}^nJ_{H-P}$) in rings A and B derived from the spectral analysis of various homo- and heteronuclear 2D maps displayed from **Figures SI-17** to **SI-20**.