Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Self-assembly synthesis of Co₃O₄/ multi walled carbon nanotubes

composites: An efficient enzyme-free glucose sensor

Raghavendra Prasad and Badekai Ramachandra Bhat *

Catalysis and Materials Laboratory, Department of Chemistry, National Institute of Technology Karnataka,

Surathkal, Srinivasnagar-575025, India,

* Corresponding author e-mail: ram@nitk.edu.in

Fig. S1

Fig. S1 The size distribution histograms and corresponding Gaussian fits. (a) MWCNT (b) Co_3O_4 -MWCNT composite and (c) Co_3O_4 .

Fig. S2 The TEM images of Co_3O_4 -MWCNT composite at different magnification (20 nm, 50 nm and 100 nm).

Glucose concentration studies

Fig. S3 (a) CV spectra of Co_3O_4 -MWCNT/GCE for different glucose concentration (1 mM to 10 mM) in 0.2 M NaOH solution at 50 mV s⁻¹ and (b) plot of peak current vs. potential with the linear regression values calculated.

Fig. S3 shows the CV spectra of Co3O4-MWCNT/GCE for various glucose concentrations. It is observed that the magnitude of the electrochemical response current of the Co3O4-MWCNT/GCE increases with increasing concentration of glucose (Fig. S3 (a)). It can attributed to catalytic action of Co3O4 bound on the MWCNT surface that acts as a high surface area matrix and facilitates higher electron transfer rate. From the linear relartionship measurements the regression coefficient value of anodic and cathodic peaks are found to be $R^2 = 0.96$, 0.9587, 0.95 and 0.95 respectively Fig. S3 (b). These results suggest the synergistic effect of Co3O4 and MWCNT will effectively enhances the direct electrocatalytic oxidation of glucose.