Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information

Enzyme immobilization and molecular modeling studies on organic-inorganic polypyrrole-

titanium(IV)phosphate nanocomposite

Umair Baig^{a,b}*, Mohammed Ashraf Gondal^{a,b}*, Md. Fazle Alam^c, Amaj Ahmed Laskar^c Mahboob Alam^d, Hina Younus^c,

^aCenter of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

^bLaser Research Group, Physics Department & Center of Excellence in Nanotechnology King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

^cInterdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202002 (UP) India ^dDivision of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea

> *Corresponding authors' email: <u>umairbaig@kfupm.edu.sa</u> (U. Baig) <u>magondal@kfupm.edu.sa</u> (M.A.Gondal)

Telephone: +9663-8602351/8603274; Fax: +9663-8604281

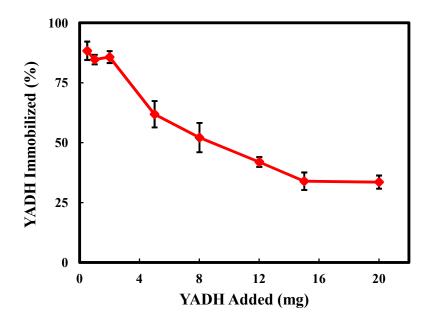


Fig. S1. Binding efficiency of varying amount of YADH added to 20 mg of nanocomposite.

When the amount of PPy and PPy-TiP nanocomposite was kept constant at 20 mg and the concentration of YADH varied from 1-15 mg/mL, it was that the most efficient level of enzyme binding occurred upto 2 mg/mL of YADH as shown in **Fig. S1**. At this level, around 85 % YADH had become immobilized. Beyond 2 mg/mL, the percentage of bound YADH decreases exponentially. So, for further experiments we have used 2 mg/ mL of YADH immobilized on 20 mg of nanocomposite. We have also calculated the weight ratio (mg of bound YADH/mg of nanocomposite) which was 0.335. It was found that when weight ratio increases the residual activity decreases. It has been proposed that when YADH is too heavily saturated on the surface of nanocomposite, it causes steric hindrance and blocks the active site of the YADH. If active site of an enzyme is hindered by any means or substrates are not accessible to the enzyme, the overall activity of that enzyme decreases. As shown in **Table S1** that the point of saturation for the enzyme complex on the nanocomposite surface is 0.08, at which the enzyme attained maximum activity value of 417.08 IU/mg.

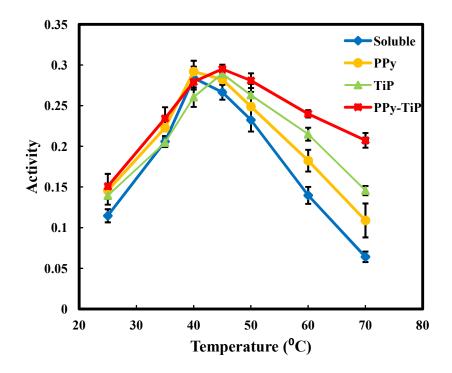


Fig. S2. Effect of temperature on the activity of soluble and immobilized YADH.

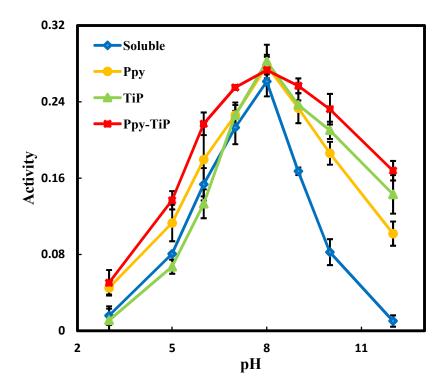


Fig. S3. Effect of pH on the activity of soluble and immobilized YADH.

ad	ADH ded ng)	YADH bound (mg)	Weight ratio (mg of bound enzyme/mg of nanoparticles)	Enzyme activity (IU/mg) Theoretical (A)	Enzyme activity (IU/mg) Calculated (B)	Loading efficiency (B/A) x100
0	.5	0.43	0.021	150	81.44 ± 7.95	52.49 ± 31
	1	0.82	0.041	300	196.28 ± 5.53	65.81 ± 1.41
-	2	1.70	0.084	600	417.08 ± 16.22	$\textbf{68.84} \pm \textbf{3.12}$
	5	3.09	0.154	1500	768.32 ± 42.87	50.81 ± 2.44
	8	4.17	0.208	2400	992.52 ± 38.74	$\textbf{40.99} \pm \textbf{1.20}$
1	2	5.03	0.251	3600	1065.8 ± 37.99	19.97 ± 1.71
1	15	5.09	0.254	4500	1009.79 ± 27.57	22.51 ± 1.91
2	20	6.71	0.335	6000	910.49 ± 19.54	16.68 ± 1.64

Table S1. Loading efficiencies for varying ratio of bound YADH to PPy-TiP nanocomposite.

ESI. 1. Enzyme leakage behavior

The enzyme leakage behavior was calculated during reusability assay. In this assay, immobilized formulations were stored in Tris-HCl buffer of pH 8.0 at 4 ^oC for the period of 24 hrs. After 24 h, whole formulations were centrifuged at 4000 rpm for 20 min and collected the supernatant as well as the pallet. In the supernatant, protein concentration as well as the YADH activity was measured. This process was run for 10 successive uses. The leakage ratio was calculated by the following equation:

Leakage (%) = ([YADH]_{solution} x V_{solution} / Total YADH immobilized) x 100

As shown in **Table S2**, 42.58% of immobilized YADH on PPy nanoparticles leaks out during the course of 10 successive uses whereas only 9.54 % leaks out in the case of PPy-TiP

nanocomposite. Therefore, the YADH immobilized on PPy-TiP nanocomposite was having maximum reusability. Now this part is added as supplementary information.

S. No	Source of YADH	Leakage percentage (%)
1	PPy-YADH	42.58±4.45
2	TiP-YADH	21.76±2.87
3	PPy-TiP-YADH	9.54±1.06

Table S2. Leakage of YADH in PPy, TiP and PPy-TiP nanocomposite.