Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Facile synthesis of Ag nanowires/mesoporous TiO₂ core-shell nanocables with improved properties for lithium storage

GenLong Qu,^a Hongbo Geng,^a Jun Guo,^b Junwei Zheng,^c Hongwei Gu^{*a}

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China. E-mail: hongwei@suda.edu.cn

^cCollege of Physics, Optolectronics and Energy, Soochow University, Suzhou, 215006, China

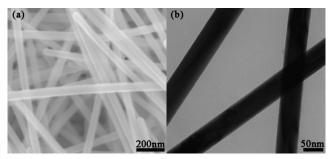


Figure S1. (a) SEM and (b) TEM images of Ag Nanowires.

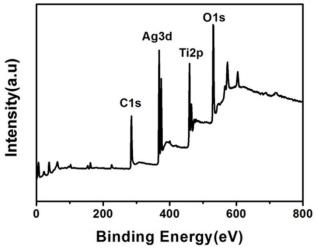


Figure S2. The survey spectrum of AgNW@mTiO2 nanocables

^bAnalysis and Testing Center, Soochow University,

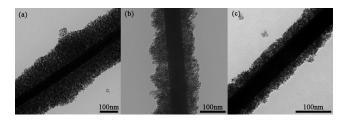


Figure S3. The TEM images of Ag/TiO_2 -0.1 (a), Ag/TiO_2 (b) and Ag/TiO_2 -0.4 (c) nanocable.

Figure S4. Cycling performance of Ag/TiO2, Ag/TiO2-0.4 and Ag/TiO2-0.1 at a current of 0.5 C.

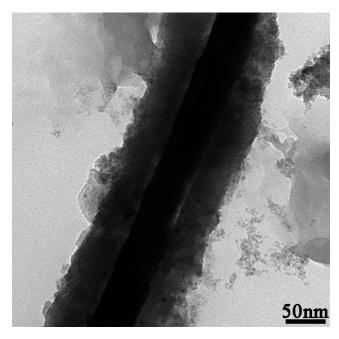


Figure S5. The TEM images of Ag/TiO_2 core-shell nanocables after 50 cycles at a rate of 1 C.

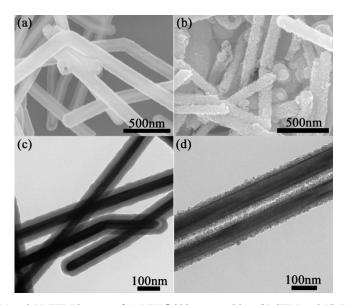


Figure S6. (a) SEM and (c) TEM images of $AgNW@SiO_2$ nanocables; (b) SEM and (d) TEM images of the $AgNW@SnO_2 \ nanocables.$