Electronic Supplementary Information (ESI)

Experimental and theoretical investigation of tetra-oxidized terarylenes with highcontrast fluorescence switching

Rui Kanazawa,^a Maki Taguchi,^a Takuya Nakashima^a and Tsuyoshi Kawai^{a,b}

^a Graduate School of Materials Science, Nara Institute of Science and Technology, NAIST, Ikoma, Nara 630-0192, Japan ^bNAIST-CEMES International Collaborative Laboratory for Supraphotoactive Systems, NAIST, CEMES-UPR 8011 CNRS, 29, rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France

Table of Contents

1. Experimental detail	
2. Optical properties	
3. Quantum chemical calculations	S9

1. Experimental detail

Synthesis

Scheme S1 Synthetic routes of **BTO-ET** and **PTO-ET**: (a) 1. *n*-BuLi, THF 2. ethyl bromide; (b) AlCl₃, AcCl, CH₂Cl₂; (c) SeO₂, Dioxane/H₂O; (d) 1. Benzothiophene, toluene 2. SnCl₄; (e) thiobenzamide, CF₃COOH; (f) *m*-CPBA, CH₂Cl₂; (g) 1. *n*-BuLi, THF 2. ethyl iodide; (h) Br₂, AcOH; (i) phenylboronic acid, Pd(PPh₃)₄, triphenylphosphine, 2M K₃PO₄ aq., 1,4-dioxane; (j) 1. *n*-BuLi, THF 2. Isopropoxyboronic acid pinacol ester; (k) 4,5-dibromo-2-phenylthiazole, Pd(PPh₃)₄, triphenylphosphine, 2M K₃PO₄ aq., 1,4-dioxane; (l) *m*-CPBA, CH₂Cl₂.

NMR spectra of BT-ET, BTO-ET, PT-ET and PTO-ET

Fig. S2 ¹³C NMR spectra of BT-ET (75 MHz, CDCl₃)

Fig. S3 ¹H NMR spectra of BTO-ET (300 MHz, CDCl₃)

Fig. S4 ¹³C NMR spectra of BTO-ET (75 MHz, CDCl₃)

Fig. S5 ¹H NMR spectra of PT-ET (300 MHz, CDCl₃)

Fig. S6 ¹³C NMR spectra of PT-ET (75 MHz, CDCl₃)

Fig. S7 ¹H NMR spectra of PTO-ET (300 MHz, CDCl₃)

Fig. S8 ¹³C NMR spectra of PTO-ET (75 MHz, CDCl₃)

2. Optical properties

Photochromic properties

Fig. S9 Absorption spectra and photographs of solutions containing (a) **BT-ET**, (b) **BTO-ET**, (c) **PT-ET** and (d) **PTO-ET** in CH₂Cl₂ before and after UV irradiation.

Fluorescent properties

Fig. S10 Fluorescence excitation spectra and photographs of solutions containing (a) **BTO-ET** and (b) **PTO-ET** in CH₂Cl₂ after UV irradiation

 Table S1 Fluorescence quantum yields of the closed-ring isomers of tetra-oxidized terarylenes in various solvents.

Compd. ^{<i>a</i>} /Solvt.	toleuene	cyclohexane	1,4-dioxane	CH ₂ Cl ₂	
BTO-ET	0.64	0.55	0.53	0.44	
BTO-ME	0.45	0.40	0.33	0.29	
PTO-ET	0.51	0.46	0.42	0.41	
PTO-ME	0.37	0.27	0.31	0.32	

^a Closed-ring forms

3. Quantum chemical calculations

Fig. S11 Optimized structures for BT-ET; (a) open- and (b) closed-ring form obtained at an ω B97XD/6-31G(d,p) level.

Fig. S12 Optimized structures for PT-ET; (a) open- and (b) closed-ring form obtained at an ω B97XD/6-31G(d,p) level.

Fig. S13 Optimized structures for PTO-ET; (a) open- and (b) closed-ring form obtained at an ω B97XD/6-31G(d,p) level.

Fig. S14 Optimized structures for the closed-ring form of PTO-ME obtained at an ω B97XD/6-31G(d,p) level.