Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary material

Recyclable aluminium oxy-hydroxide supported Pd nanoparticles for selective hydrogenation of nitro compounds via sodium borohydride hydrolysis

Haydar Göksu

Kaynasli Vocational College, Düzce University, Düzce 81900, Turkey

haydargoksu@duzce.edu.tr

NEW JOURNAL OF CHEMİSTRY

Contents (41 pages)

- Page S2 Different methods in hydrogenation reactions
- Page S3 EDX image
- Page S4 EDX image
- Page S5 NMR spectra and references
- Page S6 NMR spectra and spectral data for the amine products

Catalyst	Reaction Condition	Time	Yield (%)	Refs
SAC^{a}	Substrate (1 mmol), catalyst (300 mg), NaBH ₄ (4 mmol), EtOH/H ₂ O (20 mL), 5 °C	4 h	87	1
G-PdCu	Substrate (1 mmol), catalyst (6 mg, 2 mol% Pd), NaBH ₄ (2 mmol), EtOH/H ₂ O (3 mL), 50 °C	1.5 h	81	2
Ag-MPTA-1 ^b	Substrate (0.2 mmol), catalyst (0.05 g), NaOH (0.5 mmol), iPrOH (20 mL), 80 °C, N ₂ atmosphere	8 h	98	3
G-NiPd	Substrate (1 mmol), catalyst (4 mg), NH ₃ BH ₃ (3 mmol), H ₂ O/MeOH (10 mL), RT	5 min	>99	4
SiO ₂ -Pd	Substrate (17.5 mmol), catalyst (5 μmol), H ₂ (1 atm), H ₂ O (5 mL), 30 °C	12.5 h	100	5
MoS ₂	Substrate (1 mmol), catalyst (0.1 mmol, 16 mg), N_2H_4 . H_2O (3 mmol), 60 °C	6 h	>99	6
Fe ₃ O ₄ @C@Pt	Substrate (0.25 mmol), catalyst (10 mg), H ₂ (1 atm), EtOH (5 mL), RT	1 h	>99	7
Rh/C	Substrate (1 mmol), catalyst (0.1 mol%) ,N ₂ H ₄ .H ₂ O (2 mmol), 60 °C	1 h	96	8
GO-Pt	Substrate (48.9 mmol), catalyst, H ₂ (1 MPa), EtOH (30 mL), 40 $^{\circ}$ C	2 h	98	9
Pt/PICP ^c	Substrate (1 mmol), catalyst (0.5 mol%), H ₂ (1 MPa), THF (2 mL), RT	3 h	99	10
Pd/AlO(OH)	Substrate (1 mmol), catalyst (25 mg), NaBH ₄ (3 mmol), H ₂ O/MeOH (1 mL), RT	1.15 min	>99	This study

Table S1 Different methods in hydrogenation of 3-nitro phenol to 3-amino phenol

^a Scrap automobile catalyst ^b Mesoporous poly-triallylamine ^c Porous ionic copolymer

Table S2 The reduction of some nitroarenes in the presence different commercial catalyst.

Catalyst	Substrate	Reaction Condition	Time	Yield (%)	Refs
Pd/C	Nitrobenzene	Substrate (17.5 mmol), catalyst (5 μ mol), H ₂ (1 atm), H ₂ O (5 mL), 30 °C	24 h	38	5
	4-bromo nitrobenzene	Substrate (1 mmol), catalyst (13 mg, 10 wt% mol% Pd), N ₂ H ₄ .H ₂ O (10 mmol), MeOH (5 mL), 80 °C	5 min.	92	11
	Nitrobenzene	Substrate (5 mmol), catalyst (5 mol%), 1,4-cyclohexadiene (6 equiv), MeOH (10 mL), MW, 120 °C	5 min.	70	12
	Nitrobenzene	Substrate (1 mmol), catalyst (15 mg), $B_{10}H_{14}$ (10 mg), MeOH (5 mL), AcOH (two drops), N ₂ atmosphere, reflux	1.5 h	90	13
Fe ₃ O ₄	3-nitroaniline	Substrate (1 mmol), catalyst (0.003 mmol), NaBH ₄ , RT	5 min.	12	14
Cu(Acac) ₂	3-nitroaniline	Substrate (1 mmol), catalyst (0.003 mmol), NaBH ₄ , RT	5 min.	69	14

Figure S1 EDX spectrum before the reaction of Pd/AlO(OH) NPs.

Figure S2 EDX spectrum after using ten times of Pd/AlO(OH) NPs.

Figure S3 ¹H-NMR spectra of 1-methyl-4-aminobenzene (A) The reduction in the presence of Pd/C; (B) The reduction in the presence of PdAlO(OH) NPs.

Figure S4 ¹H-NMR spectrum of the phenylmethanamine.

References

- 1. H. Genc, Catal. Commun., 2015, 67, 64-67.
- 2. Y.-S. Feng, J.-J. Ma, Y.-M. Kang and H.-J. Xu, Tetrahedron, 2014, 70, 6100-6105.
- N. Salam, B. Banerjee, A. S. Roy, P. Mondal, S. Roy, A. Bhaumik and Sk. M. Islam, *Appl. Catal. A*, 2014, 477, 184-194.
- 4. H. Goksu, S. F. Ho, O. Metin, K. Korkmaz, A. M. Garcia, M. S. Gultekin and S. Sun, ACS Catal., 2014, 4, 1777-1782.
- 5. J. Li, X.-Y. Shi, Y.-Y. Bi, J.-F. Wei and Z.-G. Chen, ACS Catal., 2011, 1, 657-664.
- 6. L. Huang, P. Luo, M. Xiong, R. Chen, Y. Wang, W. Xing and J. Huang, Chin. J. Chem., 2013, 31, 987-991.
- 7. M. Xie, F. Zhang, Y. Long and J. Ma, RSC Adv., 2013, 3, 10329-10334.
- 8. P. Luo, K. Xu, R. Zhang, L. Huang, J. Wang, W. Xing and J. Huang, Catal. Sci. Technol., 2012, 2, 301-304
- 9. R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen and Z. Hou, Carbon, 2012, 50, 586-596.
- 10. K. Xu, Y. Zhang, X. Chen, L. Huang and R. Zhang, Adv. Synth. Catal. 2011, 353, 1260-1264.
- 11. F. Li, B. Frett and H. Li, Synlett, 2014, 25, 1403-1408.
- 12. J. F. Quinn, C. E. Bryant, K. C. Golden and B. T. Gregg, Tetrahedron Letters, 2010, 51, 786-789.
- 13. J. W. Bae, Y. J. Cho, S. H. Lee and C. M. Yoon, Tetrahedron Lett., 2000, 41, 175-177.
- 14. R. K. Sharma, Y. Monga, A. Puri, J. Mol. Catal. A: Chem., 2014, 393, 84-95.

¹H-NMR and ¹³C-NMR spectra and spectral data for the amine products

NH ₂	¹³ C NMR (100MHz, D_2O) δ 46.6, 9.2.
1	
2	2 P P P P P P P P P P P P P P P P P P P
	FREQUENCY 929.387
180	9.246 9.246
160	HEIGHT 12.0 10.9
140	
120	
100	
80	
5	
40	
20	
ud d	

H ₂ N	¹³ C NMR (100MHz, D ₂ O) δ 143.5, 129.3, 129.2, 128.5, 43.4.		